26.4 Lattice Paths: Multinomial Coefficients and Set Partitions26.6 Other Lattice Path Numbers

§26.5 Lattice Paths: Catalan Numbers

Contents

§26.5(i) Definitions

\mathop{C\/}\nolimits\!\left(n\right) is the Catalan number. It counts the number of lattice paths from (0,0) to (n,n) that stay on or above the line y=x.

26.5.1\mathop{C\/}\nolimits\!\left(n\right)=\frac{1}{n+1}\binom{2n}{n}=\frac{1}{2n+1}\binom{2n+1}{n}=\binom{2n}{n}-\binom{2n}{n-1}=\binom{2n-1}{n}-\binom{2n-1}{n+1}.

(Sixty-six equivalent definitions of \mathop{C\/}\nolimits\!\left(n\right) are given in Stanley (1999, pp. 219–229).)

See Table 26.5.1.

Table 26.5.1: Catalan numbers.
n \mathop{C\/}\nolimits\!\left(n\right) n \mathop{C\/}\nolimits\!\left(n\right) n \mathop{C\/}\nolimits\!\left(n\right)
0 1 7 429 14 26 74440
1 1 8 1430 15 96 94845
2 2 9 4862 16 353 57670
3 5 10 16796 17 1296 44790
4 14 11 58786 18 4776 38700
5 42 12 2 08012 19 17672 63190
6 132 13 7 42900 20 65641 20420

§26.5(ii) Generating Function

§26.5(iii) Recurrence Relations

§26.5(iv) Limiting Forms

26.5.7\lim _{{n\to\infty}}\frac{\mathop{C\/}\nolimits\!\left(n+1\right)}{\mathop{C\/}\nolimits\!\left(n\right)}=4.