Notations BNotations D
Notations C
*AB♦C♦DEFGHIJKLMNOPQRSTUVWXYZ
\subset
is contained in; Common Notations and Definitions
\subseteq
is, or is contained in; Common Notations and Definitions
\Complex
complex plane (excluding infinity); Common Notations and Definitions
\mathop{C\/}\nolimits\!\left(n\right)
Catalan number; (26.5.1)
\mathop{C\/}\nolimits(I) or \mathop{C\/}\nolimits(a,b)
continuous on an interval I or (a,b); §1.4(ii)
\mathop{C^{{n}}\/}\nolimits(I) or \mathop{C^{{n}}\/}\nolimits(a,b)
continuously differentiable n times on an interval I or (a,b); §1.4(iii)
\mathop{C^{{\infty}}\/}\nolimits(I) or \mathop{C^{{\infty}}\/}\nolimits(a,b)
infinitely differentiable on an interval I or (a,b); §1.4(iii)
\mathop{\chi\/}\nolimits\!\left(n\right)
Dirichlet character; §27.8
\mathop{C\/}\nolimits\!\left(z\right)
Fresnel integral; (7.2.7)
\chi(n)
ratio of gamma functions; §9.7(i)
\mathop{c\/}\nolimits\!\left(n\right)
number of compositions of n; §26.11
C_{1}(z)=\mathop{C\/}\nolimits\!\left(\sqrt{2/\pi}z\right)
alternative notation for the Fresnel integral; §7.1
(with \mathop{C\/}\nolimits\!\left(z\right): Fresnel integral)
C_{2}(z)=\mathop{C\/}\nolimits\!\left(\sqrt{2z/\pi}\right)
alternative notation for the Fresnel integral; §7.1
(with \mathop{C\/}\nolimits\!\left(z\right): Fresnel integral)
\mathop{\mathscr{C}_{{\nu}}\/}\nolimits\!\left(z\right)
cylinder function; §10.2(ii)
\mathop{C_{{n}}\/}\nolimits\!\left(x\right)
dilated Chebyshev polynomial; (18.1.3)
\mathop{C_{{\ell}}\/}\nolimits\!\left(\eta\right)
normalizing constant for Coulomb radial functions; (33.2.5)
\mathop{c_{{m}}\/}\nolimits\!\left(n\right)
number of compositions of n into exactly m parts; §26.11
\mathop{c_{{k}}\/}\nolimits\!\left(n\right)
Ramanujan’s sum; (27.10.4)
\mathop{C^{{(\lambda)}}_{{\alpha}}\/}\nolimits\!\left(z\right)
Gegenbauer function; §15.9(iii)
\mathop{C^{{(\lambda)}}_{{n}}\/}\nolimits\!\left(x\right)
ultraspherical (or Gegenbauer) polynomial; Table 18.3.1
\mathop{c\/}\nolimits\!\left(\mathrm{condition},n\right)
restricted number of compositions of n; §26.11
\mathop{C_{{n}}\/}\nolimits\!\left(x,a\right)
Charlier polynomial; Table 18.19.1
C_{n}^{m}(z,\xi)
Ince polynomials; §28.31(ii)
\mathop{c\/}\nolimits\!\left(\epsilon,\ell;r\right)
irregular Coulomb function; (33.14.9)
C(f,h)(x)
cardinal function; (3.3.43)
\mathop{C_{{n}}\/}\nolimits\!\left(x;\beta\,|\, q\right)
continuous q-ultraspherical polynomial; (18.28.13)
\mathop{\mathrm{cd}\/}\nolimits\left(z,k\right)
Jacobian elliptic function; (22.2.8)
\mathop{\mathit{cdE}^{{m}}_{{2n+2}}\/}\nolimits\!\left(z,k^{2}\right)
Lamé polynomial; (29.12.7)
\mathop{\mathrm{Ce}_{{\nu}}\/}\nolimits\!\left(z,q\right)
modified Mathieu function; (28.20.3)
\mathop{\mathrm{ce}_{{n}}\/}\nolimits\!\left(z,q\right)
Mathieu function; §28.2(vi)
\mathop{\mathrm{ce}_{{\nu}}\/}\nolimits\!\left(z,q\right)
Mathieu function of noninteger order; (28.12.12)
\mathop{\mathit{cE}^{{m}}_{{2n+1}}\/}\nolimits\!\left(z,k^{2}\right)
Lamé polynomial; (29.12.3)
\mathrm{ceh}_{n}(z,q)=\mathop{\mathrm{Ce}_{{n}}\/}\nolimits\!\left(z,q\right)
notation used by Campbell (1955); §28.1
(with \mathop{\mathrm{Ce}_{{\nu}}\/}\nolimits\!\left(z,q\right): modified Mathieu function)
\mathop{\mathrm{cel}\/}\nolimits\!\left(k_{c},p,a,b\right)
Bulirsch’s complete elliptic integral; (19.2.11)
\mathop{\mathrm{Chi}\/}\nolimits\!\left(z\right)
hyperbolic cosine integral; (6.2.16)
\mathop{\mathrm{Ci}\/}\nolimits\!\left(z\right)
cosine integral; (6.2.11)
\mathop{\mathrm{Ci}\/}\nolimits\!\left(a,z\right)
generalized cosine integral; (8.21.2)
\mathop{\mathrm{ci}\/}\nolimits\!\left(a,z\right)
generalized cosine integral; (8.21.1)
\mathop{\mathrm{Cin}\/}\nolimits\!\left(z\right)
cosine integral; (6.2.12)
\mathrm{cn}(z\mathpunct{|}m)=\mathop{\mathrm{cn}\/}\nolimits\left(z,\sqrt{m}\right)
alternative notation; §22.1
(with \mathop{\mathrm{cn}\/}\nolimits\left(z,k\right): Jacobian elliptic function)
\mathop{\mathrm{cn}\/}\nolimits\left(z,k\right)
Jacobian elliptic function; (22.2.5)
\mathop{\cos\/}\nolimits z
cosine function; (4.14.2)
\mathop{\mathrm{Cos}_{{q}}\/}\nolimits\!\left(x\right)
q-cosine function; (17.3.6)
\mathop{\mathrm{cos}_{{q}}\/}\nolimits\!\left(x\right)
q-cosine function; (17.3.5)
\mathop{\cosh\/}\nolimits z
hyperbolic cosine function; (4.28.2)
\mathop{\cot\/}\nolimits z
cotangent function; (4.14.7)
\mathop{\coth\/}\nolimits z
hyperbolic cotangent function; (4.28.7)
\mathop{\mathrm{cs}\/}\nolimits\left(z,k\right)
Jacobian elliptic function; (22.2.9)
\mathop{\csc\/}\nolimits z
cosecant function; (4.14.5)
\mathop{\mathrm{csch}\/}\nolimits z
hyperbolic cosecant function; (4.28.5)
\curl
of vector-valued function; (1.6.22)