What's New
About the Project
NIST
Notations

Notations C

*AB♦C♦DEFGHIJKLMNOPQRSTUVWXYZ
is contained in; Common Notations and Definitions
is, or is contained in; Common Notations and Definitions
complex plane; Common Notations and Definitions
C ( n )
Catalan number; 26.5.1
C(I) or C(a,b)
continuous on an interval I or (a,b); §1.4(ii)
Cn(I) or Cn(a,b)
continuously differentiable n times on an interval I or (a,b); §1.4(iii)
C(I) or C(a,b)
infinitely differentiable on an interval I or (a,b); §1.4(iii)
χ ( n )
Dirichlet character; §27.8
C ( z )
Fresnel integral; 7.2.7
χ ( n )
ratio of gamma functions; §9.7(i)
c ( n )
number of compositions of n; §26.11
C 1 ( z ) = C ( 2 / π z )
alternative notation for the Fresnel integral; §7.1
(with C(z): Fresnel integral)
C 2 ( z ) = C ( 2 z / π )
alternative notation for the Fresnel integral; §7.1
(with C(z): Fresnel integral)
𝒞 ν ( z )
cylinder function; §10.2(ii)
C n ( x )
dilated Chebyshev polynomial; 18.1.3
C ( η )
normalizing constant for Coulomb radial functions; 33.2.5
c m ( n )
number of compositions of n into exactly m parts; §26.11
c k ( n )
Ramanujan’s sum; 27.10.4
C α ( λ ) ( z )
Gegenbauer function; §15.9(iii)
C n ( λ ) ( x )
ultraspherical (or Gegenbauer) polynomial; Table 18.3.1
c ( condition , n )
restricted number of compositions of n; §26.11
C n ( x ; a )
Charlier polynomial; Table 18.19.1
C n m ( z , ξ )
Ince polynomials; §28.31(ii)
c ( ϵ , ; r )
irregular Coulomb function; 33.14.9
C ( f , h ) ( x )
cardinal function; 3.3.43
C n ( x ; β | q )
continuous q-ultraspherical polynomial; 18.28.13
cd ( z , k )
Jacobian elliptic function; 22.2.8
cdE 2 n + 2 m ( z , k 2 )
Lamé polynomial; 29.12.7
Ce ν ( z , q )
modified Mathieu function; 28.20.3
ce ν ( z , q )
Mathieu function of noninteger order; 28.12.12
ce n ( z , q )
Mathieu function; §28.2(vi)
cE 2 n + 1 m ( z , k 2 )
Lamé polynomial; 29.12.3
ceh n ( z , q ) = Ce n ( z , q )
notation used by Campbell (1955); §28.1
(with Ceν(z,q): modified Mathieu function)
cel ( k c , p , a , b )
Bulirsch’s complete elliptic integral; 19.2.11
Chi ( z )
hyperbolic cosine integral; 6.2.16
Ci ( z )
cosine integral; 6.2.11
Ci ( a , z )
generalized cosine integral; 8.21.2
ci ( a , z )
generalized cosine integral; 8.21.1
Cin ( z )
cosine integral; 6.2.12
cn ( z | m ) = cn ( z , m )
alternative notation; §22.1
(with cn(z,k): Jacobian elliptic function)
cn ( z , k )
Jacobian elliptic function; 22.2.5
cos z
cosine function; 4.14.2
Cos q ( x )
q-cosine function; 17.3.6
cos q ( x )
q-cosine function; 17.3.5
cosh z
hyperbolic cosine function; 4.28.2
cot z
cotangent function; 4.14.7
coth z
hyperbolic cotangent function; 4.28.7
cs ( z , k )
Jacobian elliptic function; 22.2.9
csc z
cosecant function; 4.14.5
csch z
hyperbolic cosecant function; 4.28.5
curl
of vector-valued function; 1.6.22