What's New
About the Project
NIST
Notations

Notations C

*AB♦C♦DEFGHIJKLMNOPQRSTUVWXYZ
is contained in; Common Notations and Definitions
is, or is contained in; Common Notations and Definitions
complex plane (excluding infinity); Common Notations and Definitions
C(n)
Catalan number; (26.5.1)
C(I) or C(a,b)
continuous on an interval I or (a,b); 1.4(ii)
Cn(I) or Cn(a,b)
continuously differentiable n times on an interval I or (a,b); 1.4(iii)
C(I) or C(a,b)
infinitely differentiable on an interval I or (a,b); 1.4(iii)
χ(n)
Dirichlet character; 27.8
C(z)
Fresnel integral; (7.2.7)
χ(n)
ratio of gamma functions; 9.7(i)
c(n)
number of compositions of n; 26.11
C1(z)=C(2/πz)
alternative notation for the Fresnel integral; 7.1
(with C(z): Fresnel integral)
C2(z)=C(2z/π)
alternative notation for the Fresnel integral; 7.1
(with C(z): Fresnel integral)
𝒞ν(z)
cylinder function; 10.2(ii)
Cn(x)
dilated Chebyshev polynomial; (18.1.3)
C(η)
normalizing constant for Coulomb radial functions; (33.2.5)
cm(n)
number of compositions of n into exactly m parts; 26.11
ck(n)
Ramanujan’s sum; (27.10.4)
Cα(λ)(z)
Gegenbauer function; 15.9(iii)
Cn(λ)(x)
ultraspherical (or Gegenbauer) polynomial; 18.3.1
c(condition,n)
restricted number of compositions of n; 26.11
Cn(x,a)
Charlier polynomial; 18.19.1
Cnm(z,ξ)
Ince polynomials; 28.31(ii)
c(ϵ,;r)
irregular Coulomb function; (33.14.9)
C(f,h)(x)
cardinal function; (3.3.43)
Cn(x;β| q)
continuous q-ultraspherical polynomial; (18.28.13)
cd(z,k)
Jacobian elliptic function; (22.2.8)
cdE2n+2m(z,k2)
Lamé polynomial; (29.12.7)
Ceν(z,q)
modified Mathieu function; (28.20.3)
ceν(z,q)
Mathieu function of noninteger order; (28.12.12)
cen(z,q)
Mathieu function; 28.2(vi)
cE2n+1m(z,k2)
Lamé polynomial; (29.12.3)
cehn(z,q)=Cen(z,q)
notation used by Campbell (1955); 28.1
(with Ceν(z,q): modified Mathieu function)
cel(kc,p,a,b)
Bulirsch’s complete elliptic integral; (19.2.11)
Chi(z)
hyperbolic cosine integral; (6.2.16)
Ci(z)
cosine integral; (6.2.11)
Ci(a,z)
generalized cosine integral; (8.21.2)
ci(a,z)
generalized cosine integral; (8.21.1)
Cin(z)
cosine integral; (6.2.12)
cn(z|m)=cn(z,m)
alternative notation; 22.1
(with cn(z,k): Jacobian elliptic function)
cn(z,k)
Jacobian elliptic function; (22.2.5)
cosz
cosine function; (4.14.2)
Cosq(x)
q-cosine function; (17.3.6)
cosq(x)
q-cosine function; (17.3.5)
coshz
hyperbolic cosine function; (4.28.2)
cotz
cotangent function; (4.14.7)
cothz
hyperbolic cotangent function; (4.28.7)
cs(z,k)
Jacobian elliptic function; (22.2.9)
cscz
cosecant function; (4.14.5)
cschz
hyperbolic cosecant function; (4.28.5)
curl
of vector-valued function; (1.6.22)