36.7 Zeros36.9 Integral Identities

§36.8 Convergent Series Expansions

36.8.1
\mathop{\Psi _{{K}}\/}\nolimits\!\left(\mathbf{x}\right)=\dfrac{2}{K+2}\sum\limits _{{n=0}}^{\infty}\mathop{\exp\/}\nolimits\!\left(i\dfrac{\pi(2n+1)}{2(K+2)}\right)\mathop{\Gamma\/}\nolimits\!\left(\dfrac{2n+1}{K+2}\right)a_{{2n}}(\mathbf{x}),K even,
\mathop{\Psi _{{K}}\/}\nolimits\!\left(\mathbf{x}\right)=\dfrac{2}{K+2}\sum\limits _{{n=0}}^{\infty}i^{n}\mathop{\cos\/}\nolimits\!\left(\dfrac{\pi(n(K+1)-1)}{2(K+2)}\right)\mathop{\Gamma\/}\nolimits\!\left(\dfrac{n+1}{K+2}\right)a_{n}(\mathbf{x}),K odd,

where

36.8.2
a_{0}(\mathbf{x})=1,
a_{{n+1}}(\mathbf{x})=\dfrac{i}{n+1}\sum _{{p=0}}^{{\min(n,K-1)}}(p+1)x_{{p+1}}a_{{n-p}}(\mathbf{x}),n=0,1,2,\dots.

For multinomial power series for \mathop{\Psi _{{K}}\/}\nolimits\!\left(\mathbf{x}\right), see Connor and Curtis (1982).

36.8.3\dfrac{3^{{2/3}}}{4\pi^{2}}\mathop{\Psi^{{(\mathrm{H})}}\/}\nolimits\!\left(3^{{1/3}}\mathbf{x}\right)=\mathop{\mathrm{Ai}\/}\nolimits\!\left(x\right)\mathop{\mathrm{Ai}\/}\nolimits\!\left(y\right)\sum\limits _{{n=0}}^{\infty}(-3^{{-1/3}}iz)^{n}\dfrac{c_{n}(x)c_{n}(y)}{n!}+\mathop{\mathrm{Ai}\/}\nolimits\!\left(x\right){\mathop{\mathrm{Ai}\/}\nolimits^{{\prime}}}\!\left(y\right)\sum\limits _{{n=2}}^{\infty}(-3^{{-1/3}}iz)^{n}\dfrac{c_{n}(x)d_{n}(y)}{n!}+{\mathop{\mathrm{Ai}\/}\nolimits^{{\prime}}}\!\left(x\right)\mathop{\mathrm{Ai}\/}\nolimits\!\left(y\right)\sum\limits _{{n=2}}^{\infty}(-3^{{-1/3}}iz)^{n}\dfrac{d_{n}(x)c_{n}(y)}{n!}+{\mathop{\mathrm{Ai}\/}\nolimits^{{\prime}}}\!\left(x\right){\mathop{\mathrm{Ai}\/}\nolimits^{{\prime}}}\!\left(y\right)\sum\limits _{{n=1}}^{\infty}(-3^{{-1/3}}iz)^{n}\dfrac{d_{n}(x)d_{n}(y)}{n!},

and

36.8.4\mathop{\Psi^{{(\mathrm{E})}}\/}\nolimits\!\left(\mathbf{x}\right)=2\pi^{2}\left(\dfrac{2}{3}\right)^{{2/3}}\sum\limits _{{n=0}}^{\infty}\dfrac{\left(-i(2/3)^{{2/3}}z\right)^{n}}{n!}\realpart{\left(f_{n}\left(\dfrac{x+iy}{12^{{1/3}}},\dfrac{x-iy}{12^{{1/3}}}\right)\right)},

where

36.8.5f_{n}(\zeta,\zeta^{{\ast}})=c_{n}(\zeta)c_{n}(\zeta^{{\ast}})\mathop{\mathrm{Ai}\/}\nolimits\!\left(\zeta\right)\mathop{\mathrm{Bi}\/}\nolimits\!\left(\zeta^{{\ast}}\right)+c_{n}(\zeta)d_{n}(\zeta^{{\ast}})\mathop{\mathrm{Ai}\/}\nolimits\!\left(\zeta\right){\mathop{\mathrm{Bi}\/}\nolimits^{{\prime}}}\!\left(\zeta^{{\ast}}\right)+d_{n}(\zeta)c_{n}(\zeta^{{\ast}}){\mathop{\mathrm{Ai}\/}\nolimits^{{\prime}}}\!\left(\zeta\right)\mathop{\mathrm{Bi}\/}\nolimits\!\left(\zeta^{{\ast}}\right)+d_{n}(\zeta)d_{n}(\zeta^{{\ast}}){\mathop{\mathrm{Ai}\/}\nolimits^{{\prime}}}\!\left(\zeta\right){\mathop{\mathrm{Bi}\/}\nolimits^{{\prime}}}\!\left(\zeta^{{\ast}}\right),

with asterisks denoting complex conjugates, and

36.8.6
c_{0}(t)=1,
d_{0}(t)=0,
c_{{n+1}}(t)=c_{n}^{{\mspace{1.0mu}\prime}}(t)+td_{n}(t),
d_{{n+1}}(t)=c_{n}(t)+d_{n}^{{\mspace{1.0mu}\prime}}(t).