# §8.26 Tables

## §8.26(i) Introduction

For tables published before 1961 see Fletcher et al. (1962) and Lebedev and Fedorova (1960).

## §8.26(ii) Incomplete Gamma Functions

• Khamis (1965) tabulates $P\left(a,x\right)$ for $a=0.05(.05)10(.1)20(.25)70$, $0.0001\leq x\leq 250$ to 10D.

• Pagurova (1963) tabulates $P\left(a,x\right)$ and $Q\left(a,x\right)$ (with different notation) for $a=0(.05)3$, $x=0(.05)1$ to 7D.

• Pearson (1965) tabulates the function $I(u,p)$ ($=P\left(p+1,u\right)$) for $p=-1(.05)0(.1)5(.2)50$, $u=0(.1)u_{p}$ to 7D, where $I(u,u_{p})$ rounds off to 1 to 7D; also $I(u,p)$ for $p=-0.75(.01)-1$, $u=0(.1)6$ to 5D.

• Zhang and Jin (1996, Table 3.8) tabulates $\gamma\left(a,x\right)$ for $a=0.5,1,3,5,10,25,50,100$, $x=0(.1)1(1)3,5(5)30,50,100$ to 8D or 8S.

## §8.26(iii) Incomplete Beta Functions

• Pearson (1968) tabulates $I_{x}\left(a,b\right)$ for $x=0.01(.01)1$, $a,b=0.5(.5)11(1)50$, with $b\leq a$, to 7D.

• Zhang and Jin (1996, Table 3.9) tabulates $I_{x}\left(a,b\right)$ for $x=0(.05)1$, $a=0.5,1,3,5,10$, $b=1,10$ to 8D.

## §8.26(iv) Generalized Exponential Integral

• Abramowitz and Stegun (1964, pp. 245–248) tabulates $E_{n}\left(x\right)$ for $n=2,3,4,10,20$, $x=0(.01)2$ to 7D; also $(x+n)e^{x}E_{n}\left(x\right)$ for $n=2,3,4,10,20$, $x^{-1}=0(.01)0.1(.05)0.5$ to 6S.

• Chiccoli et al. (1988) presents a short table of $E_{p}\left(x\right)$ for $p=-\tfrac{9}{2}(1)-\tfrac{1}{2}$, $0\leq x\leq 200$ to 14S.

• Pagurova (1961) tabulates $E_{n}\left(x\right)$ for $n=0(1)20$, $x=0(.01)2(.1)10$ to 4-9S; $e^{x}E_{n}\left(x\right)$ for $n=2(1)10$, $x=10(.1)20$ to 7D; $e^{x}E_{p}\left(x\right)$ for $p=0(.1)1$, $x=0.01(.01)7(.05)12(.1)20$ to 7S or 7D.

• Stankiewicz (1968) tabulates $E_{n}\left(x\right)$ for $n=1(1)10$, $x=0.01(.01)5$ to 7D.

• Zhang and Jin (1996, Table 19.1) tabulates $E_{n}\left(x\right)$ for $n=1,2,3,5,10,15,20$, $x=0(.1)1,1.5,2,3,5,10,20,30,50,100$ to 7D or 8S.