26.3 Lattice Paths: Binomial Coefficients26.5 Lattice Paths: Catalan Numbers

§26.4 Lattice Paths: Multinomial Coefficients and Set Partitions

Contents

§26.4(i) Definitions

\multinomial{n}{n_{1},n_{2},\ldots,n_{k}} is the number of ways of placing n=n_{1}+n_{2}+\cdots+n_{k} distinct objects into k labeled boxes so that there are n_{j} objects in the jth box. It is also the number of k-dimensional lattice paths from (0,0,\ldots,0) to (n_{1},n_{2},\ldots,n_{k}). For k=0,1, the multinomial coefficient is defined to be 1. For k=2

26.4.1\multinomial{n_{1}+n_{2}}{n_{1},n_{2}}=\binom{n_{1}+n_{2}}{n_{1}}=\binom{n_{1}+n_{2}}{n_{2}},

and in general,

26.4.2\multinomial{n_{1}+n_{2}+\cdots+n_{k}}{n_{1},n_{2},\ldots,n_{k}}=\frac{(n_{1}+n_{2}+\cdots+n_{k})!}{n_{1}!\, n_{2}!\,\cdots\, n_{k}!}=\prod _{{j=1}}^{{k-1}}\binom{n_{j}+n_{{j+1}}+\cdots+n_{k}}{n_{j}}.

Table 26.4.1 gives numerical values of multinomials and partitions \lambda,M_{1},M_{2},M_{3} for 1\leq m\leq n\leq 5. These are given by the following equations in which a_{1},a_{2},\ldots,a_{n} are nonnegative integers such that

26.4.3n=a_{1}+2a_{2}+\cdots+na_{n},
26.4.4m=a_{1}+a_{2}+\cdots+a_{n}.

\lambda is a partition of n:

26.4.5\lambda=1^{{a_{1}}},2^{{a_{2}}},\dots,n^{{a_{n}}}.

M_{1} is the multinominal coefficient (26.4.2):

26.4.6M_{1}=\begin{pmatrix}n\\
\overbrace{1,\ldots,1}^{{a_{1}}},\ldots,\overbrace{n,\ldots,n}^{{a_{n}}}\end{pmatrix}=\frac{n!}{(1!)^{{a_{1}}}(2!)^{{a_{2}}}\cdots(n!)^{{a_{n}}}}.

M_{2} is the number of permutations of \{ 1,2,\ldots,n\} with a_{1} cycles of length 1, a_{2} cycles of length 2, \ldots, and a_{n} cycles of length n:

26.4.7M_{2}=\frac{n!}{1^{{a_{1}}}(a_{1}!)\, 2^{{a_{2}}}(a_{2}!)\,\cdots\, n^{{a_{n}}}(a_{n}!)}.

(The empty set is considered to have one permutation consisting of no cycles.) M_{3} is the number of set partitions of \{ 1,2,\ldots,n\} with a_{1} subsets of size 1, a_{2} subsets of size 2, \ldots, and a_{n} subsets of size n:

26.4.8M_{3}=\frac{n!}{(1!)^{{a_{1}}}(a_{1}!)\,(2!)^{{a_{2}}}(a_{2}!)\,\cdots\,(n!)^{{a_{n}}}(a_{n}!)}.

For each n all possible values of a_{1},a_{2},\ldots,a_{n} are covered.

Table 26.4.1: Multinomials and partitions.
n m \lambda M_{1} M_{2} M_{3}
1 1 1^{1} 1 1 1
2 1 2^{1} 1 1 1
2 2 1^{2} 2 1 1
3 1 3^{1} 1 2 1
3 2 1^{1},2^{1} 3 3 3
3 3 1^{3} 6 1 1
4 1 4^{1} 1 6 1
4 2 1^{1},3^{1} 4 8 4
4 2 2^{2} 6 3 3
4 3 1^{2},2^{1} 12 6 6
4 4 1^{4} 24 1 1
5 1 5^{1} 1 24 1
5 2 1^{1},4^{1} 5 30 5
5 2 2^{1},3^{1} 10 20 10
5 3 1^{2},3^{1} 20 20 10
5 3 1^{1},2^{2} 30 15 15
5 4 1^{3},2^{1} 60 10 10
5 5 1^{5} 120 1 1

§26.4(ii) Generating Function

26.4.9(x_{1}+x_{2}+\cdots+x_{k})^{n}=\sum\multinomial{n}{n_{1},n_{2},\ldots,n_{k}}x_{1}^{{n_{1}}}x_{2}^{{n_{2}}}\cdots x_{k}^{{n_{k}}},

where the summation is over all nonnegative integers n_{1},n_{2},\ldots,n_{k} such that n_{1}+n_{2}+\cdots+n_{k}=n.

§26.4(iii) Recurrence Relation