13.4 Integral Representations13.6 Relations to Other Functions

§13.5 Continued Fractions

If a,b\in\Complex such that a\neq-1,-2,-3,\dots, and a-b\neq 0,1,2,\dots, then

13.5.1\frac{\mathop{M\/}\nolimits\!\left(a,b,z\right)}{\mathop{M\/}\nolimits\!\left(a+1,b+1,z\right)}=1+\cfrac{u_{{1}}z}{1+\cfrac{u_{{2}}z}{1+\cdots}},

where

13.5.2
u_{{2n+1}}=\frac{a-b-n}{(b+2n)(b+2n+1)},
u_{{2n}}=\frac{a+n}{(b+2n-1)(b+2n)}.

This continued fraction converges to the meromorphic function of z on the left-hand side everywhere in \Complex. For more details on how a continued fraction converges to a meromorphic function see Jones and Thron (1980).

If a,b\in\Complex such that a\neq 0,-1,-2,\dots, and b-a\neq 2,3,4,\dots, then

13.5.3\frac{\mathop{U\/}\nolimits\!\left(a,b,z\right)}{\mathop{U\/}\nolimits\!\left(a,b-1,z\right)}=1+\cfrac{v_{{1}}/z}{1+\cfrac{v_{{2}}/z}{1+\cdots}},

where

13.5.4
v_{{2n+1}}=a+n,
v_{{2n}}=a-b+n+1.

This continued fraction converges to the meromorphic function of z on the left-hand side throughout the sector |\mathop{\mathrm{ph}\/}\nolimits{z}|<\pi.

See also Cuyt et al. (2008, pp. 322–330).