26.6 Other Lattice Path Numbers26.8 Set Partitions: Stirling Numbers

§26.7 Set Partitions: Bell Numbers

Contents

§26.7(i) Definitions

\mathop{B\/}\nolimits\!\left(n\right) is the number of partitions of \{ 1,2,\ldots,n\}. For \mathop{S\/}\nolimits\!\left(n,k\right) see §26.8(i).

26.7.1\mathop{B\/}\nolimits\!\left(0\right)=1,
Table 26.7.1: Bell numbers.
n \mathop{B\/}\nolimits\!\left(n\right) n \mathop{B\/}\nolimits\!\left(n\right)
0 1 10 1 15975
1 1 11 6 78570
2 2 12 42 13597
3 5 13 276 44437
4 15 14 1908 99322
5 52 15 13829 58545
6 203 16 1 04801 42147
7 877 17 8 28648 69804
8 4140 18 68 20768 06159
9 21147 19 583 27422 05057

§26.7(ii) Generating Function

§26.7(iii) Recurrence Relation

26.7.6\mathop{B\/}\nolimits\!\left(n+1\right)=\sum _{{k=0}}^{n}\binom{n}{k}\mathop{B\/}\nolimits\!\left(k\right).

§26.7(iv) Asymptotic Approximation

26.7.7\mathop{B\/}\nolimits\!\left(n\right)=\frac{N^{n}e^{{N-n-1}}}{(1+\mathop{\ln\/}\nolimits N)^{{1/2}}}\left(1+\mathop{O\/}\nolimits\left(\frac{(\mathop{\ln\/}\nolimits n)^{{1/2}}}{n^{{1/2}}}\right)\right),n\to\infty,

where

26.7.8N\mathop{\ln\/}\nolimits N=n,

or, equivalently, N=e^{{\mathop{\mathrm{Wm}\/}\nolimits\!\left(n\right)}}, with properties of the Lambert function \mathop{\mathrm{Wm}\/}\nolimits\!\left(n\right) given in §4.13. For higher approximations to \mathop{B\/}\nolimits\!\left(n\right) as n\to\infty see de Bruijn (1961, pp. 104–108).