Notations HNotations J
Notations I
*ABCDEFGH♦I♦JKLMNOPQRSTUVWXYZ
\mathbf{I}
unit matrix; Common Notations and Definitions
I^{{\alpha}}
fractional integral; (2.6.33)
I^{{\alpha}}
fractional integral; (1.15.47)
I(\mathbf{m})
general elliptic integral; §19.29(ii)
\imagpart{}
imaginary part; (1.9.2)
\mathop{I_{{\nu}}\/}\nolimits\!\left(z\right)
modified Bessel function; (10.25.2)
\mathop{\widetilde{I}_{{\nu}}\/}\nolimits\!\left(x\right)
modified Bessel function of imaginary order; (10.45.2)
\mathop{{\mathsf{i}^{{(1)}}_{{n}}}\/}\nolimits\!\left(z\right)
modified spherical Bessel function; (10.47.7)
\mathop{{\mathsf{i}^{{(2)}}_{{n}}}\/}\nolimits\!\left(z\right)
modified spherical Bessel function; (10.47.8)
\mathop{I_{{x}}\/}\nolimits\!\left(a,b\right)
incomplete beta function; (8.17.2)
I(a,b,x)=\mathop{I_{{x}}\/}\nolimits\!\left(a,b\right)
notation used by Magnus et al. (1966); §8.1
(with \mathop{I_{{x}}\/}\nolimits\!\left(a,b\right): incomplete beta function)
\mathop{\mathrm{idem}\/}\nolimits\!\left(\chi _{1};\chi _{2},\dots,\chi _{n}\right)
\mathop{\mathrm{idem}\/}\nolimits function; §17.1
\mathop{\mathrm{Ie}_{{n}}\/}\nolimits\!\left(z,h\right)
modified Mathieu function; (28.20.17)
\mathop{\mathrm{i}^{{n}}\mathrm{erfc}\/}\nolimits\!\left(z\right)
repeated integrals of the complementary error function; (7.18.2)
\mathrm{in}_{n}(z,q)=\mathop{\mathrm{fe}_{{n}}\/}\nolimits\!\left(z,q\right)
notation used by Campbell (1955); §28.1
(with \mathop{\mathrm{fe}_{{n}}\/}\nolimits\!\left(z,q\right): second solution, Mathieu’s equation)
\inf
greatest lower bound (infimum); Common Notations and Definitions
\mathrm{inh}_{n}(z,q)=\mathop{\mathrm{Fe}_{{n}}\/}\nolimits\!\left(z,q\right)
notation used by Campbell (1955); §28.1
(with \mathop{\mathrm{Fe}_{{n}}\/}\nolimits\!\left(z,q\right): modified Mathieu function)
\mathrm{inv}
inversion number; §26.14(i)
\mathop{\mathrm{inverf}\/}\nolimits x
inverse error function; (7.17.1)
\mathop{\mathrm{inverfc}\/}\nolimits x
inverse complementary error function; (7.17.1)
\mathop{\mathrm{Io}_{{n}}\/}\nolimits\!\left(z,h\right)
modified Mathieu function; (28.20.18)