§17.7 Special Cases of Higher
Functions
Contents
§17.7(i)
Functions
¶
-Analog of Bailey’s
Sum
17.7.1
.

¶
-Analog of Gauss’s
Sum
17.7.2
¶ Sum Related to (17.6.4)
17.7.3
§17.7(ii)
Functions
¶
-Pfaff–Saalschütz Sum
17.7.4
¶ Nonterminating Form of the
-Saalschütz Sum
17.7.5
where
.
¶ F. H. Jackson’s Terminating
-Analog of Dixon’s Sum
17.7.6
¶ Continued Fractions
For continued-fraction representations of a ratio of
functions,
see Cuyt et al. (2008, pp. 399–400).
§17.7(iii) Other
Functions
¶
-Analog of Dixon’s
Sum
17.7.7
¶ Gasper–Rahman
-Analog of Watson’s
Sum
17.7.8
where
.
¶ Andrews’ Terminating
-Analog of (17.7.8)
17.7.9
¶ Gasper–Rahman
-Analog of Whipple’s
Sum
17.7.10
¶ Andrews’ Terminating
-Analog
17.7.11
¶ First
-Analog of Bailey’s
Sum
17.7.12
¶ Second
-Analog of Bailey’s
Sum
17.7.13
¶ F. H. Jackson’s
-Analog of Dougall’s
Sum
17.7.14
where
.
¶ Limiting Cases of (17.7.14)
17.7.15
and when
,
17.7.16
¶ Bailey’s Nonterminating Extension of Jackson’s
Sum
17.7.17
where
.
¶ Gasper–Rahman
-Analogs of the Karlsson–Minton Sums
17.7.18
and
17.7.19
where
are arbitrary nonnegative integers.
¶ Gosper’s Bibasic Sum
17.7.20
¶ Gasper’s Extensions of Gosper’s Bibasic Sum
17.7.21
17.7.22
and
-th difference generalization:
17.7.23

