26.2 Basic Definitions26.4 Lattice Paths: Multinomial Coefficients and Set Partitions

§26.3 Lattice Paths: Binomial Coefficients

Contents

§26.3(i) Definitions

\binom{m}{n} is the number of ways of choosing n objects from a collection of m distinct objects without regard to order. \binom{m+n}{n} is the number of lattice paths from (0,0) to (m,n). The number of lattice paths from (0,0) to (m,n), m\leq n, that stay on or above the line y=x is \binom{m+n}{m}-\binom{m+n}{m-1}.

26.3.1\binom{m}{n}=\binom{m}{m-n}=\frac{m!}{(m-n)!\, n!},m\geq n,

For numerical values of \binom{m}{n} and \binom{m+n}{n} see Tables 26.3.1 and 26.3.2.

Table 26.3.1: Binomial coefficients \binom{m}{n}.
m n
0 1 2 3 4 5 6 7 8 9 10
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1
10 1 10 45 120 210 252 210 120 45 10 1
Table 26.3.2: Binomial coefficients \binom{m+n}{m} for lattice paths.
m n
0 1 2 3 4 5 6 7 8
0 1 1 1 1 1 1 1 1 1
1 1 2 3 4 5 6 7 8 9
2 1 3 6 10 15 21 28 36 45
3 1 4 10 20 35 56 84 120 165
4 1 5 15 35 70 126 210 330 495
5 1 6 21 56 126 252 462 792 1287
6 1 7 28 84 210 462 924 1716 3003
7 1 8 36 120 330 792 1716 3432 6435
8 1 9 45 165 495 1287 3003 6435 12870

§26.3(ii) Generating Functions

26.3.4\sum _{{m=0}}^{{\infty}}\binom{m+n}{m}x^{m}=\frac{1}{(1-x)^{{n+1}}},|x|<1.

§26.3(iii) Recurrence Relations

§26.3(iv) Identities

26.3.9\binom{n}{0}=\binom{n}{n}=1,

§26.3(v) Limiting Form