17.5 \mathop{{{}_{{0}}\phi _{{0}}}\/}\nolimits,\mathop{{{}_{{1}}\phi _{{0}}}\/}\nolimits,\mathop{{{}_{{1}}\phi _{{1}}}\/}\nolimits Functions17.7 Special Cases of Higher \mathop{{{}_{{r}}\phi _{{s}}}\/}\nolimits Functions

§17.6 \mathop{{{}_{{2}}\phi _{{1}}}\/}\nolimits Function

Contents

§17.6(i) Special Values

Second q-Chu–Vandermonde Sum

§17.6(ii) \mathop{{{}_{{2}}\phi _{{1}}}\/}\nolimits Transformations

§17.6(iii) Contiguous Relations

§17.6(iv) Differential Equations

q-Differential Equation

(17.6.27) reduces to the hypergeometric equation (15.10.1) with the substitutions a\to q^{a}, b\to q^{b}, c\to q^{c}, followed by \lim _{{q\to 1-}}.

§17.6(v) Integral Representations

where |z|<1, |\mathop{\mathrm{ph}\/}\nolimits\!\left(-z\right)|<\pi, and the contour of integration separates the poles of \left(q^{{1+\zeta}},cq^{{\zeta}};q\right)_{{\infty}}/\mathop{\sin\/}\nolimits\!\left(\pi\zeta\right) from those of 1/\left(aq^{\zeta},bq^{\zeta};q\right)_{{\infty}}, and the infimum of the distances of the poles from the contour is positive.

§17.6(vi) Continued Fractions

For continued-fraction representations of the \mathop{{{}_{{2}}\phi _{{1}}}\/}\nolimits function, see Cuyt et al. (2008, pp. 395–399).