24.5 Recurrence Relations24.7 Integral Representations

§24.6 Explicit Formulas

The identities in this section hold for n=1,2,\ldots. (24.6.7), (24.6.8), (24.6.10), and (24.6.12) are valid also for n=0.

24.6.1\mathop{B_{{2n}}\/}\nolimits=\sum _{{k=2}}^{{2n+1}}\frac{(-1)^{{k-1}}}{k}{2n+1\choose k}\sum _{{j=1}}^{{k-1}}j^{{2n}},
24.6.2\mathop{B_{{n}}\/}\nolimits=\frac{1}{n+1}\sum _{{k=1}}^{n}\sum _{{j=1}}^{k}(-1)^{j}j^{n}{\binomial{n+1}{k-j}}\Bigg/{\binomial{n}{k}},
24.6.3\mathop{B_{{2n}}\/}\nolimits=\sum _{{k=1}}^{n}\frac{(k-1)!k!}{(2k+1)!}\*\sum _{{j=1}}^{k}(-1)^{{j-1}}{2k\choose k+j}j^{{2n}}.
24.6.4\mathop{E_{{2n}}\/}\nolimits=\sum _{{k=1}}^{n}\frac{1}{2^{{k-1}}}\sum _{{j=1}}^{k}(-1)^{j}{2k\choose k-j}j^{{2n}},
24.6.5\mathop{E_{{2n}}\/}\nolimits=\frac{1}{2^{{n-1}}}\sum _{{k=0}}^{{n-1}}(-1)^{{n-k}}(n-k)^{{2n}}\*\sum _{{j=0}}^{k}{2n-2j\choose k-j}2^{j},
24.6.6\mathop{E_{{2n}}\/}\nolimits=\sum _{{k=1}}^{{2n}}\frac{(-1)^{k}}{2^{{k-1}}}{2n+1\choose k+1}\*\sum _{{j=0}}^{{\left\lfloor\tfrac{1}{2}k-\tfrac{1}{2}\right\rfloor}}{k\choose j}(k-2j)^{{2n}}.
24.6.7\mathop{B_{{n}}\/}\nolimits\!\left(x\right)=\sum _{{k=0}}^{n}\frac{1}{k+1}\sum _{{j=0}}^{k}(-1)^{j}{k\choose j}(x+j)^{n},
24.6.8\mathop{E_{{n}}\/}\nolimits\!\left(x\right)=\frac{1}{2^{n}}\sum _{{k=1}}^{{n+1}}\sum _{{j=0}}^{{k-1}}(-1)^{j}{n+1\choose k}(x+j)^{n}.
24.6.11\mathop{B_{{n}}\/}\nolimits=\frac{n}{2^{n}(2^{n}-1)}\sum _{{k=1}}^{n}\sum _{{j=0}}^{{k-1}}(-1)^{{j+1}}{n\choose k}j^{{n-1}},
24.6.12\mathop{E_{{2n}}\/}\nolimits=\sum _{{k=0}}^{{2n}}\frac{1}{2^{k}}\sum _{{j=0}}^{k}(-1)^{j}{k\choose j}(1+2j)^{{2n}}.