33 Coulomb Functions33.2 Definitions and Basic Properties

§33.1 Special Notation

(For other notation see Notation for the Special Functions.)

k,\ell nonnegative integers.
r,x real variables.
\rho nonnegative real variable.
\epsilon,\eta real parameters.
\mathop{\psi\/}\nolimits\!\left(x\right) logarithmic derivative of \mathop{\Gamma\/}\nolimits\!\left(x\right); see §5.2(i).
\mathop{\delta\/}\nolimits\!\left(x\right) Dirac delta; see §1.17.
primes derivatives with respect to the variable.

The main functions treated in this chapter are first the Coulomb radial functions \mathop{F_{{\ell}}\/}\nolimits\!\left(\eta,\rho\right), \mathop{G_{{\ell}}\/}\nolimits\!\left(\eta,\rho\right), \mathop{{H^{{\pm}}_{{\ell}}}\/}\nolimits\!\left(\eta,\rho\right) (Sommerfeld (1928)), which are used in the case of repulsive Coulomb interactions, and secondly the functions \mathop{f\/}\nolimits\!\left(\epsilon,\ell;r\right), \mathop{h\/}\nolimits\!\left(\epsilon,\ell;r\right), \mathop{s\/}\nolimits\!\left(\epsilon,\ell;r\right), \mathop{c\/}\nolimits\!\left(\epsilon,\ell;r\right) (Seaton (1982, 2002a)), which are used in the case of attractive Coulomb interactions.

Alternative Notations

  1. Curtis (1964a):

    P_{\ell}(\epsilon,r)=(2\ell+1)!\mathop{f\/}\nolimits\!\left(\epsilon,\ell;r\right)/2^{{\ell+1}}, Q_{\ell}(\epsilon,r)=-(2\ell+1)!\mathop{h\/}\nolimits\!\left(\epsilon,\ell;r\right)/(2^{{\ell+1}}A(\epsilon,\ell)).

  2. Greene et al. (1979):

    f^{{(0)}}(\epsilon,\ell;r)=\mathop{f\/}\nolimits\!\left(\epsilon,\ell;r\right), f(\epsilon,\ell;r)=\mathop{s\/}\nolimits\!\left(\epsilon,\ell;r\right), g(\epsilon,\ell;r)=\mathop{c\/}\nolimits\!\left(\epsilon,\ell;r\right).