# §5.12 Beta Function

In this section all fractional powers have their principal values, except where noted otherwise. In (5.12.1)–(5.12.4) it is assumed $\Re a>0$ and $\Re b>0$.

## Euler’s Beta Integral

 5.12.1 $\mathrm{B}\left(a,b\right)=\int_{0}^{1}t^{a-1}(1-t)^{b-1}\mathrm{d}t=\frac{% \Gamma\left(a\right)\Gamma\left(b\right)}{\Gamma\left(a+b\right)}.$ ⓘ Defines: $\mathrm{B}\left(\NVar{a},\NVar{b}\right)$: beta function Symbols: $\Gamma\left(\NVar{z}\right)$: gamma function, $\mathrm{d}\NVar{x}$: differential of $x$, $\int$: integral, $a$: real or complex variable and $b$: real or complex variable A&S Ref: 6.2.1 and 6.2.2 Referenced by: §10.22(ii), §10.43(iii), §19.20(i), §19.20(iv), §2.6(iii), §5.12, §5.12, §7.7(ii) Permalink: http://dlmf.nist.gov/5.12.E1 Encodings: TeX, pMML, png See also: Annotations for 5.12, 5.12 and 5
 5.12.2 $\int_{0}^{\pi/2}{\sin^{2a-1}}\theta{\cos^{2b-1}}\theta\mathrm{d}\theta=\tfrac{% 1}{2}\mathrm{B}\left(a,b\right).$
 5.12.3 $\int_{0}^{\infty}\frac{t^{a-1}\mathrm{d}t}{(1+t)^{a+b}}=\mathrm{B}\left(a,b% \right).$ ⓘ Symbols: $\mathrm{B}\left(\NVar{a},\NVar{b}\right)$: beta function, $\mathrm{d}\NVar{x}$: differential of $x$, $\int$: integral, $a$: real or complex variable and $b$: real or complex variable A&S Ref: 6.2.1 and 6.2.2 Referenced by: §5.12 Permalink: http://dlmf.nist.gov/5.12.E3 Encodings: TeX, pMML, png See also: Annotations for 5.12, 5.12 and 5
 5.12.4 $\int_{0}^{1}\frac{t^{a-1}(1-t)^{b-1}}{(t+z)^{a+b}}\mathrm{d}t=\mathrm{B}\left(% a,b\right)(1+z)^{-a}z^{-b},$ $|\operatorname{ph}z|<\pi$.
 5.12.5 $\int_{0}^{\pi/2}(\cos t)^{a-1}\cos\left(bt\right)\mathrm{d}t=\frac{\pi}{2^{a}}% \frac{1}{a\mathrm{B}\left(\frac{1}{2}(a+b+1),\frac{1}{2}(a-b+1)\right)},$ $\Re a>0$.
 5.12.6 $\int_{0}^{\pi}(\sin t)^{a-1}e^{ibt}\mathrm{d}t=\frac{\pi}{2^{a-1}}\frac{e^{i% \pi b/2}}{a\mathrm{B}\left(\frac{1}{2}(a+b+1),\frac{1}{2}(a-b+1)\right)},$ $\Re a>0$.
 5.12.7 $\int_{0}^{\infty}\frac{\cosh\left(2bt\right)}{(\cosh t)^{2a}}\mathrm{d}t=4^{a-% 1}\mathrm{B}\left(a+b,a-b\right),$ $\Re a>|\Re b|$.
 5.12.8 ${\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{\mathrm{d}t}{(w+it)^{a}(z-it)^{b}}% =\frac{(w+z)^{1-a-b}}{(a+b-1)\mathrm{B}\left(a,b\right)}},$ $\Re(a+b)>1$, $\Re w>0$, $\Re z>0$.

In (5.12.8) the fractional powers have their principal values when $w>0$ and $z>0$, and are continued via continuity.

 5.12.9 ${\frac{1}{2\pi i}\int_{c-\infty i}^{c+\infty i}t^{-a}(1-t)^{-1-b}\mathrm{d}t=% \frac{1}{b\mathrm{B}\left(a,b\right)}},$ $0, $\Re(a+b)>0$.
 5.12.10 ${\frac{1}{2\pi i}\int_{0}^{(1+)}t^{a-1}(t-1)^{b-1}\mathrm{d}t=\frac{\sin\left(% \pi b\right)}{\pi}\mathrm{B}\left(a,b\right)},$ $\Re a>0$,

with the contour as shown in Figure 5.12.1.

In (5.12.11) and (5.12.12) the fractional powers are continuous on the integration paths and take their principal values at the beginning.

 5.12.11 $\frac{1}{e^{2\pi ia}-1}\int_{\infty}^{(0+)}t^{a-1}(1+t)^{-a-b}\mathrm{d}t=% \mathrm{B}\left(a,b\right),$

when $\Re b>0$, $a$ is not an integer and the contour cuts the real axis between $-1$ and the origin. See Figure 5.12.2.

## Pochhammer’s Integral

When $a,b\in\mathbb{C}$

 5.12.12 $\int_{P}^{(1+,0+,1-,0-)}t^{a-1}(1-t)^{b-1}\mathrm{d}t=-4e^{\pi i(a+b)}\sin% \left(\pi a\right)\sin\left(\pi b\right)\mathrm{B}\left(a,b\right),$

where the contour starts from an arbitrary point $P$ in the interval $(0,1)$, circles $1$ and then $0$ in the positive sense, circles $1$ and then $0$ in the negative sense, and returns to $P$. It can always be deformed into the contour shown in Figure 5.12.3.