1.1 Special Notation1.3 Determinants

§1.2 Elementary Algebra

Contents

§1.2(i) Binomial Coefficients

In (1.2.1) and (1.2.3) k and n are nonnegative integers and k\leq n. In (1.2.2), (1.2.4), and (1.2.5) n is a positive integer.

1.2.1\binom{n}{k}=\frac{n!}{(n-k)!k!}=\binom{n}{n-k}.

Binomial Theorem

1.2.2(a+b)^{n}=a^{n}+\binom{n}{1}a^{{n-1}}b+\binom{n}{2}a^{{n-2}}b^{2}+\dots+\binom{n}{n-1}ab^{{n-1}}+b^{n}.
1.2.3\binom{n}{0}+\binom{n}{1}+\dots+\binom{n}{n}=2^{n}.
1.2.4\binom{n}{0}-\binom{n}{1}+\dots+(-1)^{n}\binom{n}{n}=0.
1.2.5\binom{n}{0}+\binom{n}{2}+\binom{n}{4}+\dots+\binom{n}{\ell}=2^{{n-1}},

where \ell is n or n-1 according as n is even or odd.

In (1.2.6)–(1.2.9) k and m are nonnegative integers and n is unrestricted.

1.2.6\binom{n}{k}=\frac{n(n-1)\cdots(n-k+1)}{k!}=\frac{(-1)^{k}\left(-n\right)_{{k}}}{k!}=(-1)^{k}\binom{k-n-1}{k}.
1.2.7\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}.
1.2.8\sum^{m}_{{k=0}}\binom{n+k}{k}=\binom{n+m+1}{m}.
1.2.9\binom{n}{0}-\binom{n}{1}+\dots+(-1)^{m}\binom{n}{m}=(-1)^{m}\binom{n-1}{m}.

§1.2(ii) Finite Series

Arithmetic Progression

1.2.10a+(a+d)+(a+2d)+\dots+(a+(n-1)d)=na+\tfrac{1}{2}n(n-1)d=\tfrac{1}{2}n(a+\ell),

where \ell = last term of the series = a+(n-1)d.

Geometric Progression

1.2.11a+ax+ax^{2}+\dots+ax^{{n-1}}=\frac{a(1-x^{n})}{1-x},x\not=1.

§1.2(iii) Partial Fractions

Let \alpha _{1},\alpha _{2},\dots,\alpha _{n} be distinct constants, and f(x) be a polynomial of degree less than n. Then

1.2.12\frac{f(x)}{(x-\alpha _{1})(x-\alpha _{2})\cdots(x-\alpha _{n})}=\frac{A_{1}}{x-\alpha _{1}}+\frac{A_{2}}{x-\alpha _{2}}+\dots+\frac{A_{n}}{x-\alpha _{n}},

where

1.2.13A_{j}=\frac{f(\alpha _{j})}{\prod\limits _{{k\not=j}}(\alpha _{j}-\alpha _{k})}.

Also,

1.2.14\frac{f(x)}{(x-\alpha _{1})^{n}}=\frac{B_{1}}{x-\alpha _{1}}+\frac{B_{2}}{(x-\alpha _{1})^{2}}+\dots+\frac{B_{n}}{(x-\alpha _{1})^{n}},

where

1.2.15B_{j}=\frac{f^{{(n-j)}}(\alpha _{1})}{(n-j)!},

and f^{{(k)}} is the k-th derivative of f1.4(iii)).

If m_{1},m_{2},\dots,m_{n} are positive integers and \deg f<\sum _{{j=1}}^{n}m_{j}, then there exist polynomials f_{j}(x), \deg f_{j}<m_{j}, such that

1.2.16\frac{f(x)}{(x-\alpha _{1})^{{m_{1}}}(x-\alpha _{2})^{{m_{2}}}\cdots(x-\alpha _{n})^{{m_{n}}}}=\frac{f_{1}(x)}{(x-\alpha _{1})^{{m_{1}}}}+\frac{f_{2}(x)}{(x-\alpha _{2})^{{m_{2}}}}+\cdots+\frac{f_{n}(x)}{(x-\alpha _{n})^{{m_{n}}}}.

To find the polynomials f_{j}(x), j=1,2,\dots,n, multiply both sides by the denominator of the left-hand side and equate coefficients. See Chrystal (1959, pp. 151–159).

§1.2(iv) Means

The arithmetic mean of n numbers a_{1},a_{2},\dots,a_{n} is

1.2.17A=\frac{a_{1}+a_{2}+\dots+a_{n}}{n}.

The geometric mean G and harmonic mean H of n positive numbers a_{1},a_{2},\dots,a_{n} are given by

1.2.18G=(a_{1}a_{2}\cdots a_{n})^{{1/n}},
1.2.19\frac{1}{H}=\frac{1}{n}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\dots+\frac{1}{a_{n}}\right).

If r is a nonzero real number, then the weighted mean M(r) of n nonnegative numbers a_{1},a_{2},\dots,a_{n}, and n positive numbers p_{1},p_{2},\dots,p_{n} with

1.2.20p_{1}+p_{2}+\dots+p_{n}=1,

is defined by

1.2.21M(r)=(p_{1}a_{1}^{r}+p_{2}a_{2}^{r}+\dots+p_{n}a_{n}^{r})^{{1/r}},

with the exception

1.2.22M(r)=0,r<0 and a_{1}a_{2}\dots a_{n}=0.
1.2.23\lim _{{r\to\infty}}M(r)=\max(a_{1},a_{2},\dots,a_{n}),
1.2.24\lim _{{r\to-\infty}}M(r)=\min(a_{1},a_{2},\dots,a_{n}).

For p_{j}=1/n, j=1,2,\dots,n,

1.2.25
M(1)=A,
M(-1)=H,

and

1.2.26\lim _{{r\to 0}}M(r)=G.

The last two equations require a_{j}>0 for all j.