9.4 Maclaurin Series9.6 Relations to Other Functions

§9.5 Integral Representations

Contents

§9.5(i) Real Variable

9.5.1\mathop{\mathrm{Ai}\/}\nolimits\!\left(x\right)=\frac{1}{\pi}\int _{0}^{\infty}\mathop{\cos\/}\nolimits\!\left(\tfrac{1}{3}t^{3}+xt\right)dt.
9.5.2\mathop{\mathrm{Ai}\/}\nolimits\!\left(-x\right)=\frac{x^{{\ifrac{1}{2}}}}{\pi}\int _{{-1}}^{\infty}\mathop{\cos\/}\nolimits\!\left(x^{{\ifrac{3}{2}}}(\tfrac{1}{3}t^{3}+t^{2}-\tfrac{2}{3})\right)dt,x>0.

See also (9.10.19), (9.11.3), (36.9.2), and Vallée and Soares (2010, §2.1.3).

§9.5(ii) Complex Variable

See also (9.10.18) and (9.11.4).