20 Theta Functions20.2 Definitions and Periodic Properties

§20.1 Special Notation

(For other notation see Notation for the Special Functions.)

m, n integers.
z(\in\Complex) the argument.
\tau(\in\Complex) the lattice parameter, \imagpart{\tau}>0.
q(\in\Complex) the nome, q=e^{{i\pi\tau}}, 0<\left|q\right|<1. Since \tau is not a single-valued function of q, it is assumed that \tau is known, even when q is specified. Most applications concern the rectangular case \realpart{\tau}=0, \imagpart{\tau}>0, so that 0<q<1 and \tau and q are uniquely related.
q^{{\alpha}} e^{{i\alpha\pi\tau}} for \alpha\in\Real (resolving issues of choice of branch).
S_{1}\setmod S_{2} set of all elements of S_{1}, modulo elements of S_{2}. Thus two elements of S_{1}\setmod S_{2} are equivalent if they are both in S_{1} and their difference is in S_{2}. (For an example see §20.12(ii).)

The main functions treated in this chapter are the theta functions \mathop{\theta _{{j}}\/}\nolimits\!\left(z\middle|\tau\right)=\mathop{\theta _{{j}}\/}\nolimits\!\left(z,q\right) where j=1,2,3,4 and q=e^{{i\pi\tau}}. When \tau is fixed the notation is often abbreviated in the literature as \mathop{\theta _{{j}}\/}\nolimits(z), or even as simply \mathop{\theta _{{j}}\/}\nolimits, it being then understood that the argument is the primary variable. Sometimes the theta functions are called the Jacobian or classical theta functions to distinguish them from generalizations; compare Chapter 21.

Primes on the \mathop{\theta\/}\nolimits symbols indicate derivatives with respect to the argument of the \mathop{\theta\/}\nolimits function.

Other Notations

Jacobi’s original notation: \Theta(z|\tau), \Theta _{1}(z|\tau), \mathrm{H}(z|\tau), \mathrm{H}_{1}(z|\tau), respectively, for \mathop{\theta _{{4}}\/}\nolimits\!\left(u\middle|\tau\right), \mathop{\theta _{{3}}\/}\nolimits\!\left(u\middle|\tau\right), \mathop{\theta _{{1}}\/}\nolimits\!\left(u\middle|\tau\right), \mathop{\theta _{{2}}\/}\nolimits\!\left(u\middle|\tau\right), where u=z/{\mathop{\theta _{{3}}\/}\nolimits^{{2}}}\!\left(0\middle|\tau\right). Here the symbol \mathrm{H} denotes capital eta. See, for example, Whittaker and Watson (1927, p. 479) and Copson (1935, pp. 405, 411).

Neville’s notation: \theta _{s}(z|\tau), \theta _{c}(z|\tau), \theta _{d}(z|\tau), \theta _{n}(z|\tau), respectively, for {\mathop{\theta _{{3}}\/}\nolimits^{{2}}}\!\left(0\middle|\tau\right)\ifrac{\mathop{\theta _{{1}}\/}\nolimits\!\left(u\middle|\tau\right)}{{\mathop{\theta _{{1}}\/}\nolimits^{{\prime}}}\!\left(0\middle|\tau\right)}, \ifrac{\mathop{\theta _{{2}}\/}\nolimits\!\left(u\middle|\tau\right)}{\mathop{\theta _{{2}}\/}\nolimits\!\left(0\middle|\tau\right)}, \ifrac{\mathop{\theta _{{3}}\/}\nolimits\!\left(u\middle|\tau\right)}{\mathop{\theta _{{3}}\/}\nolimits\!\left(0\middle|\tau\right)}, \ifrac{\mathop{\theta _{{4}}\/}\nolimits\!\left(u\middle|\tau\right)}{\mathop{\theta _{{4}}\/}\nolimits\!\left(0\middle|\tau\right)}, where again u=z/{\mathop{\theta _{{3}}\/}\nolimits^{{2}}}\!\left(0\middle|\tau\right). This notation simplifies the relationship of the theta functions to Jacobian elliptic functions (§22.2); see Neville (1951).

McKean and Moll’s notation: \vartheta _{j}(z|\tau)=\mathop{\theta _{{j}}\/}\nolimits\!\left(\pi z\middle|\tau\right), j=1,2,3,4. See McKean and Moll (1999, p. 125).

Additional notations that have been used in the literature are summarized in Whittaker and Watson (1927, p. 487).