Notations INotations K
Notations J
*ABCDEFGHI♦J♦KLMNOPQRSTUVWXYZ
\mathop{j_{{\nu,m}}\/}\nolimits
zeros of the Bessel function \mathop{J_{{\nu}}\/}\nolimits\!\left(x\right); §10.21(i)
\mathop{{j^{{\prime}}_{{\nu,m}}}\/}\nolimits
zeros of the Bessel function derivative {\mathop{J_{{\nu}}\/}\nolimits^{{\prime}}}\!\left(x\right); §10.21(i)
\mathop{J\/}\nolimits\!\left(\tau\right)
Klein’s complete invariant; (23.15.7)
\mathop{\mathbf{J}_{{\nu}}\/}\nolimits\!\left(z\right)
Anger function; (11.10.1)
\mathop{J_{{\nu}}\/}\nolimits\!\left(z\right)
Bessel function of the first kind; (10.2.2)
\mathop{\widetilde{J}_{{\nu}}\/}\nolimits\!\left(x\right)
Bessel function of imaginary order; (10.24.2)
\mathcal{J}_{{\nu+\frac{1}{2}(m+1)}}(\mathbf{T})=\mathop{A_{{\nu}}\/}\nolimits\!\left(\mathbf{T}\right)/\mathop{A_{{\nu}}\/}\nolimits\!\left(\boldsymbol{{0}}\right)
notation used by Faraut and Korányi (1994, pp. 320–329); §35.1
(with \mathop{A_{{\nu}}\/}\nolimits\!\left(\mathbf{T}\right): Bessel function of matrix argument (first kind))
\mathop{J_{{k}}\/}\nolimits\!\left(n\right)
Jordan’s function; (27.2.11)
j_{n}(z)=\mathop{\mathsf{j}_{{n}}\/}\nolimits\!\left(z\right)
notation used by Abramowitz and Stegun (1964); §10.1
(with \mathop{\mathsf{j}_{{n}}\/}\nolimits\!\left(z\right): spherical Bessel function of the first kind)
\mathop{\mathsf{j}_{{n}}\/}\nolimits\!\left(z\right)
spherical Bessel function of the first kind; (10.47.3)
\mathrm{jn}_{n}(z,q)=\mathop{\mathrm{ge}_{{n}}\/}\nolimits\!\left(z,q\right)
notation used by Campbell (1955); §28.1
(with \mathop{\mathrm{ge}_{{n}}\/}\nolimits\!\left(z,q\right): second solution, Mathieu’s equation)
\mathrm{jnh}_{n}(z,q)=\mathop{\mathrm{Ge}_{{n}}\/}\nolimits\!\left(z,q\right)
notation used by Campbell (1955); §28.1
(with \mathop{\mathrm{Ge}_{{n}}\/}\nolimits\!\left(z,q\right): modified Mathieu function)