Notations RNotations T
Notations S
*ABCDEFGHIJKLMNOPQR♦S♦TUVWXYZ
\mathop{\mathfrak{S}_{{n}}\/}\nolimits
set of permutations of \{ 1,2,\ldots,n\}; §26.13
\mathscr{S}^{{(k)}}_{n}=\mathop{S\/}\nolimits\!\left(n,k\right)
notation used by Fort (1948); §26.1
(with \mathop{S\/}\nolimits\!\left(n,k\right): Stirling number of the second kind)
S_{n}^{{(k)}}=\mathop{s\/}\nolimits\!\left(n,k\right)
notation used by Abramowitz and Stegun (1964, Chapter 24), Fort (1948); §26.1
(with \mathop{s\/}\nolimits\!\left(n,k\right): Stirling number of the first kind)
S_{1}(n-1,n-k)=\mathop{s\/}\nolimits\!\left(n,k\right)/(-1)^{{n-k}}
notation used by Carlitz (1960), Gould (1960); §26.1
(with \mathop{s\/}\nolimits\!\left(n,k\right): Stirling number of the first kind)
\mathfrak{S}_{n}^{k}=\mathop{S\/}\nolimits\!\left(n,k\right)
notation used by Jordan (1939); §26.1
(with \mathop{S\/}\nolimits\!\left(n,k\right): Stirling number of the second kind)
S_{n}^{k}=\mathop{s\/}\nolimits\!\left(n,k\right)
notation used by (Jordan, 1939), Moser and Wyman (1958a); §26.1
(with \mathop{s\/}\nolimits\!\left(n,k\right): Stirling number of the first kind)
\mathop{S\/}\nolimits\!\left(z\right)
Fresnel integral; (7.2.8)
S_{1}(z)=\mathop{S\/}\nolimits\!\left(\sqrt{2/\pi}z\right)
alternative notation for the Fresnel integral; §7.1
(with \mathop{S\/}\nolimits\!\left(z\right): Fresnel integral)
S_{2}(z)=\mathop{S\/}\nolimits\!\left(\sqrt{2z/\pi}\right)
alternative notation for the Fresnel integral; §7.1
(with \mathop{S\/}\nolimits\!\left(z\right): Fresnel integral)
\mathop{S_{{n}}\/}\nolimits\!\left(x\right)
dilated Chebyshev polynomial; (18.1.3)
\mathop{S_{{{\mu},{\nu}}}\/}\nolimits\!\left(z\right)
Lommel function; (11.9.5)
\mathop{s_{{{\mu},{\nu}}}\/}\nolimits\!\left(z\right)
Lommel function; (11.9.3)
\mathop{S^{{m(j)}}_{{n}}\/}\nolimits\!\left(z,\gamma\right)
radial spheroidal wave function; (30.11.3)
\mathop{\mathcal{S}\/}\nolimits\left(f;s\right)
Stieltjes transform; (1.14.47)
\mathop{S\/}\nolimits\!\left(n,k\right)
Stirling number of the second kind; §26.8(i)
\mathop{s\/}\nolimits\!\left(n,k\right)
Stirling number of the first kind; §26.8(i)
S_{2}(k,n-k)=\mathop{S\/}\nolimits\!\left(n,k\right)
notation used by Carlitz (1960), Gould (1960); §26.1
(with \mathop{S\/}\nolimits\!\left(n,k\right): Stirling number of the second kind)
\mathop{S_{{n}}\/}\nolimits\!\left(x;q\right)
Stieltjes–Wigert polynomial; (18.27.18)
S^{{(1)}}_{{mn}}(\gamma,x)\propto\mathop{\mathsf{Ps}^{{m}}_{{n}}\/}\nolimits\!\left(x,\gamma^{2}\right)
alternative notation for the spheroidal wave function of the first kind; §30.1
(with \mathop{\mathsf{Ps}^{{m}}_{{n}}\/}\nolimits\!\left(x,\gamma^{2}\right): spheroidal wave function of the first kind)
S^{{(2)}}_{{mn}}(\gamma,x)\propto\mathop{\mathsf{Qs}^{{m}}_{{n}}\/}\nolimits\!\left(x,\gamma^{2}\right)
alternative notation for the spheroidal wave function of the second kind; §30.1
(with \mathop{\mathsf{Qs}^{{m}}_{{n}}\/}\nolimits\!\left(x,\gamma^{2}\right): spheroidal wave function of the second kind)
S_{n}^{m}(z,\xi)
Ince polynomials; §28.31(ii)
\mathop{s\/}\nolimits\!\left(\epsilon,\ell;r\right)
regular Coulomb function; (33.14.9)
S(k,h)(x)
Sinc function; §3.3(vi)
\mathop{S_{{n}}\/}\nolimits\!\left(x;a,b,c\right)
continuous dual Hahn polynomial; Table 18.25.1
\mathop{\mathrm{sc}\/}\nolimits\left(z,k\right)
Jacobian elliptic function; (22.2.9)
\mathop{\mathit{scdE}^{{m}}_{{2n+3}}\/}\nolimits\!\left(z,k^{2}\right)
Lamé polynomial; (29.12.8)
\mathop{\mathit{scE}^{{m}}_{{2n+2}}\/}\nolimits\!\left(z,k^{2}\right)
Lamé polynomial; (29.12.5)
\mathop{\mathrm{sd}\/}\nolimits\left(z,k\right)
Jacobian elliptic function; (22.2.7)
\mathop{\mathit{sdE}^{{m}}_{{2n+2}}\/}\nolimits\!\left(z,k^{2}\right)
Lamé polynomial; (29.12.6)
\mathop{\mathrm{Se}_{{\nu}}\/}\nolimits\!\left(z,q\right)
modified Mathieu function; (28.20.4)
\mathrm{Se}_{{n}}(s,z)=\dfrac{\mathop{\mathrm{ce}_{{n}}\/}\nolimits\!\left(z,q\right)}{\mathop{\mathrm{ce}_{{n}}\/}\nolimits\!\left(0,q\right)}
notation used by National Bureau of Standards (1967); §28.1
(with \mathop{\mathrm{ce}_{{n}}\/}\nolimits\!\left(z,q\right): Mathieu function)
\mathrm{Se}_{{n}}(c,z)=\dfrac{\mathop{\mathrm{ce}_{{n}}\/}\nolimits\!\left(z,q\right)}{\mathop{\mathrm{ce}_{{n}}\/}\nolimits\!\left(0,q\right)}
notation used by Stratton et al. (1941); §28.1
(with \mathop{\mathrm{ce}_{{n}}\/}\nolimits\!\left(z,q\right): Mathieu function)
\mathop{\mathrm{se}_{{\nu}}\/}\nolimits\!\left(z,q\right)
Mathieu function of noninteger order; (28.12.13)
\mathop{\mathrm{se}_{{n}}\/}\nolimits\!\left(z,q\right)
Mathieu function; §28.2(vi)
\mathop{\mathit{sE}^{{m}}_{{2n+1}}\/}\nolimits\!\left(z,k^{2}\right)
Lamé polynomial; (29.12.2)
\mathop{\sec\/}\nolimits z
secant function; (4.14.6)
\mathop{\mathrm{sech}\/}\nolimits z
hyperbolic secant function; (4.28.6)
\mathrm{seh}_{n}(z,q)=\mathop{\mathrm{Se}_{{n}}\/}\nolimits\!\left(z,q\right)
notation used by Campbell (1955); §28.1
(with \mathop{\mathrm{Se}_{{\nu}}\/}\nolimits\!\left(z,q\right): modified Mathieu function)
\mathop{\mathrm{Shi}\/}\nolimits\!\left(z\right)
hyperbolic sine integral; (6.2.15)
\mathop{\mathrm{Si}\/}\nolimits\!\left(z\right)
sine integral; (6.2.9)
\mathop{\mathrm{si}\/}\nolimits\!\left(z\right)
sine integral; (6.2.10)
\mathop{\mathrm{Si}\/}\nolimits\!\left(a,z\right)
generalized sine integral; (8.21.2)
\mathop{\mathrm{si}\/}\nolimits\!\left(a,z\right)
generalized sine integral; (8.21.1)
\sigma _{n}^{k}=\mathop{S\/}\nolimits\!\left(n,k\right)
notation used by Moser and Wyman (1958b); §26.1
(with \mathop{S\/}\nolimits\!\left(n,k\right): Stirling number of the second kind)
\mathop{\sigma _{{n}}\/}\nolimits\!\left(\nu\right)
Rayleigh function; (10.21.55)
\mathop{{\sigma _{{\ell}}}\/}\nolimits\!\left(\eta\right)
Coulomb phase shift; (33.2.10)
\mathop{\sigma _{{\alpha}}\/}\nolimits\!\left(n\right)
sum of powers of divisors of n; (27.2.10)
\mathop{\sigma\/}\nolimits\!\left(z\right) (= \mathop{\sigma\/}\nolimits\!\left(z|\mathbb{L}\right) = \mathop{\sigma\/}\nolimits\!\left(z;g_{2},g_{3}\right))
Weierstrass sigma function; (23.2.6)
\mathop{\sigma\/}\nolimits\!\left(z|\mathbb{L}\right)
Weierstrass sigma function; §23.1
\mathop{\sigma\/}\nolimits\!\left(z;g_{2},g_{3}\right)
Weierstrass sigma function; §23.3(i)
\mathop{\mathrm{sign}\/}\nolimits x
sign of x; Common Notations and Definitions
\mathop{\sin\/}\nolimits z
sine function; (4.14.1)
\mathop{\mathrm{Sin}_{{q}}\/}\nolimits\!\left(x\right)
q-sine function; (17.3.4)
\mathop{\mathrm{sin}_{{q}}\/}\nolimits\!\left(x\right)
q-sine function; (17.3.3)
\mathop{\sinh\/}\nolimits z
hyperbolic sine function; (4.28.1)
\mathrm{sn}(z\mathpunct{|}m)=\mathop{\mathrm{sn}\/}\nolimits\left(z,\sqrt{m}\right)
alternative notation; §22.1
(with \mathop{\mathrm{sn}\/}\nolimits\left(z,k\right): Jacobian elliptic function)
\mathop{\mathrm{sn}\/}\nolimits\left(z,k\right)
Jacobian elliptic function; (22.2.4)
\mathrm{So}_{{n}}(s,z)=\dfrac{\mathop{\mathrm{se}_{{n}}\/}\nolimits\!\left(z,q\right)}{{\mathop{\mathrm{se}_{{n}}\/}\nolimits^{{\prime}}}\!\left(0,q\right)}
notation used by National Bureau of Standards (1967); §28.1
(with \mathop{\mathrm{se}_{{n}}\/}\nolimits\!\left(z,q\right): Mathieu function)
\mathrm{So}_{{n}}(c,z)=\dfrac{\mathop{\mathrm{se}_{{n}}\/}\nolimits\!\left(z,q\right)}{{\mathop{\mathrm{se}_{{n}}\/}\nolimits^{{\prime}}}\!\left(0,q\right)}
notation used by Stratton et al. (1941); §28.1
(with \mathop{\mathrm{se}_{{n}}\/}\nolimits\!\left(z,q\right): Mathieu function)
\sup
least upper bound (supremum); Common Notations and Definitions