25.1 Special Notation25.3 Graphics

§25.2 Definition and Expansions

Contents

§25.2(i) Definition

When \realpart{s}>1,

25.2.1\mathop{\zeta\/}\nolimits\!\left(s\right)=\sum _{{n=1}}^{\infty}\frac{1}{n^{s}}.

Elsewhere \mathop{\zeta\/}\nolimits\!\left(s\right) is defined by analytic continuation. It is a meromorphic function whose only singularity in \Complex is a simple pole at s=1, with residue 1.

§25.2(ii) Other Infinite Series

For further expansions of functions similar to (25.2.1) (Dirichlet series) see §27.4. This includes, for example, 1/\mathop{\zeta\/}\nolimits\!\left(s\right).

§25.2(iv) Infinite Products

25.2.11\mathop{\zeta\/}\nolimits\!\left(s\right)=\prod _{p}(1-p^{{-s}})^{{-1}},\realpart{s}>1,

product over all primes p.

25.2.12\mathop{\zeta\/}\nolimits\!\left(s\right)=\frac{(2\pi)^{s}e^{{-s-(\EulerConstant s/2)}}}{2(s-1)\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}s+1\right)}\prod _{\rho}\left(1-\frac{s}{\rho}\right)e^{{s/\rho}},

product over zeros \rho of \mathop{\zeta\/}\nolimits with \realpart{\rho}>0 (see §25.10(i)); \EulerConstant is Euler’s constant (§5.2(ii)).