4.7 Derivatives and Differential Equations4.9 Continued Fractions

§4.8 Identities

Contents

§4.8(i) Logarithms

In (4.8.1)–(4.8.4) z_{1}z_{2}\neq 0.

4.8.1\mathop{\mathrm{Ln}\/}\nolimits\!\left(z_{1}z_{2}\right)=\mathop{\mathrm{Ln}\/}\nolimits z_{1}+\mathop{\mathrm{Ln}\/}\nolimits z_{2}.

This is interpreted that every value of \mathop{\mathrm{Ln}\/}\nolimits\!\left(z_{1}z_{2}\right) is one of the values of \mathop{\mathrm{Ln}\/}\nolimits z_{1}+\mathop{\mathrm{Ln}\/}\nolimits z_{2}, and vice versa.

4.8.2\mathop{\ln\/}\nolimits\!\left(z_{1}z_{2}\right)=\mathop{\ln\/}\nolimits z_{1}+\mathop{\ln\/}\nolimits z_{2},-\pi\leq\mathop{\mathrm{ph}\/}\nolimits z_{1}+\mathop{\mathrm{ph}\/}\nolimits z_{2}\leq\pi,
4.8.3\mathop{\mathrm{Ln}\/}\nolimits\frac{z_{1}}{z_{2}}=\mathop{\mathrm{Ln}\/}\nolimits z_{1}-\mathop{\mathrm{Ln}\/}\nolimits z_{2},
4.8.4\mathop{\ln\/}\nolimits\frac{z_{1}}{z_{2}}=\mathop{\ln\/}\nolimits z_{1}-\mathop{\ln\/}\nolimits z_{2},-\pi\leq\mathop{\mathrm{ph}\/}\nolimits z_{1}-\mathop{\mathrm{ph}\/}\nolimits z_{2}\leq\pi.

If a\neq 0 and a^{z} has its general value, then

4.8.11\mathop{\mathrm{Ln}\/}\nolimits\!\left(a^{z}\right)=z\mathop{\mathrm{Ln}\/}\nolimits a+2k\pi i,k\in\Integer.

If a\neq 0 and a^{z} has its principal value, then

4.8.12\mathop{\ln\/}\nolimits\!\left(a^{z}\right)=z\mathop{\ln\/}\nolimits a+2k\pi i,

where the integer k is chosen so that \realpart{(-iz\mathop{\ln\/}\nolimits a)}+2k\pi\in[-\pi,\pi].

4.8.13\mathop{\ln\/}\nolimits\!\left(a^{x}\right)=x\mathop{\ln\/}\nolimits a,a>0.

§4.8(ii) Powers

4.8.14a^{{z_{1}}}a^{{z_{2}}}=a^{{z_{1}+z_{2}}},
4.8.15a^{z}b^{z}=(ab)^{z},-\pi\leq\mathop{\mathrm{ph}\/}\nolimits a+\mathop{\mathrm{ph}\/}\nolimits b\leq\pi,
4.8.16e^{{z_{1}}}e^{{z_{2}}}=e^{{z_{1}+z_{2}}},
4.8.17(e^{{z_{1}}})^{{z_{2}}}=e^{{z_{1}z_{2}}},-\pi\leq\imagpart{z_{1}}\leq\pi.

The restriction on z_{1} can be removed when z_{2} is an integer.