25.7 Integrals25.9 Asymptotic Approximations

§25.8 Sums

25.8.1\sum _{{k=2}}^{\infty}\left(\mathop{\zeta\/}\nolimits\!\left(k\right)-1\right)=1.
25.8.2\sum _{{k=0}}^{\infty}\frac{\mathop{\Gamma\/}\nolimits\!\left(s+k\right)}{(k+1)!}\left(\mathop{\zeta\/}\nolimits\!\left(s+k\right)-1\right)=\mathop{\Gamma\/}\nolimits\!\left(s-1\right),s\neq 1,0,-1,-2,\dots.
25.8.3\sum _{{k=0}}^{\infty}\frac{\mathop{\Gamma\/}\nolimits\!\left(s+k\right)\mathop{\zeta\/}\nolimits\!\left(s+k\right)}{k!\mathop{\Gamma\/}\nolimits\!\left(s\right)2^{{s+k}}}=(1-2^{{-s}})\mathop{\zeta\/}\nolimits\!\left(s\right),s\neq 1.
25.8.4\sum _{{k=1}}^{\infty}\frac{(-1)^{k}}{k}(\mathop{\zeta\/}\nolimits\!\left(nk\right)-1)=\mathop{\ln\/}\nolimits\!\left(\prod _{{j=0}}^{{n-1}}\mathop{\Gamma\/}\nolimits\!\left(2-e^{{(2j+1)\pi i/n}}\right)\right),n=2,3,4,\dots.
25.8.9\sum _{{k=1}}^{\infty}\frac{\mathop{\zeta\/}\nolimits\!\left(2k\right)}{(2k+1)2^{{2k}}}=\frac{1}{2}-\frac{1}{2}\mathop{\ln\/}\nolimits 2.
25.8.10\sum _{{k=1}}^{\infty}\frac{\mathop{\zeta\/}\nolimits\!\left(2k\right)}{(2k+1)(2k+2)2^{{2k}}}=\frac{1}{4}-\frac{7}{4\pi^{2}}\mathop{\zeta\/}\nolimits\!\left(3\right).

For other sums see Prudnikov et al. (1986b, pp. 648–649), Hansen (1975, pp. 355–357), Ogreid and Osland (1998), and Srivastava and Choi (2001, Chapter 3).