4.3 Graphics4.5 Inequalities

§4.4 Special Values and Limits

Contents

§4.4(i) Logarithms

4.4.1\mathop{\ln\/}\nolimits 1=0,
4.4.2\mathop{\ln\/}\nolimits\!\left(-1\pm i0\right)=\pm\pi i,
4.4.3\mathop{\ln\/}\nolimits\!\left(\pm i\right)=\pm\tfrac{1}{2}\pi i.

§4.4(ii) Powers

4.4.4e^{0}=1,
4.4.5e^{{\pm\pi i}}=-1,
4.4.6e^{{\pm\pi i/2}}=\pm i,
4.4.7e^{{2\pi ki}}=1,k\in\Integer,
4.4.8e^{{\pm\pi i/3}}=\frac{1}{2}\pm i\frac{\sqrt{3}}{2},
4.4.9e^{{\pm 2\pi i/3}}=-\frac{1}{2}\pm i\frac{\sqrt{3}}{2},
4.4.10e^{{\pm\pi i/4}}=\frac{1}{\sqrt{2}}\pm i\frac{1}{\sqrt{2}},
4.4.11e^{{\pm 3\pi i/4}}=-\frac{1}{\sqrt{2}}\pm i\frac{1}{\sqrt{2}},
4.4.12i^{{\pm i}}=e^{{\mp\pi/2}}.

§4.4(iii) Limits

4.4.13\lim _{{x\to\infty}}x^{{-a}}\mathop{\ln\/}\nolimits x=0,\realpart{a}>0,
4.4.14\lim _{{x\to 0}}x^{a}\mathop{\ln\/}\nolimits x=0,\realpart{a}>0,
4.4.15\lim _{{x\to\infty}}x^{a}e^{{-x}}=0,
4.4.16\lim _{{z\to\infty}}z^{a}e^{{-z}}=0,|\mathop{\mathrm{ph}\/}\nolimits z|\leq\tfrac{1}{2}\pi-\delta (<\tfrac{1}{2}\pi),

where a (\in\Complex) and \delta (\in(0,\tfrac{1}{2}\pi]) are constants.

4.4.17\lim _{{n\to\infty}}\left(1+\frac{z}{n}\right)^{n}=e^{z},z= constant.
4.4.18\lim _{{n\to\infty}}\left(1+\frac{1}{n}\right)^{n}=e.
4.4.19\lim _{{n\to\infty}}\left(\left(\sum^{n}_{{k=1}}\frac{1}{k}\right)-\mathop{\ln\/}\nolimits n\right)=\EulerConstant=0.57721\  56649\  0 1532\  86060\dots,

where \EulerConstant is Euler’s constant; see (5.2.3).