33.1 Special Notation33.3 Graphics

§33.2 Definitions and Basic Properties

Contents

§33.2(i) Coulomb Wave Equation

33.2.1\frac{{d}^{2}w}{{d\rho}^{2}}+\left(1-\frac{2\eta}{\rho}-\frac{\ell(\ell+1)}{\rho^{2}}\right)w=0,\ell=0,1,2,\dots.

This differential equation has a regular singularity at \rho=0 with indices \ell+1 and -\ell, and an irregular singularity of rank 1 at \rho=\infty (§§2.7(i), 2.7(ii)). There are two turning points, that is, points at which \ifrac{{d}^{2}w}{{d\rho}^{2}}=02.8(i)). The outer one is given by

33.2.2\mathop{\rho _{{\mathrm{tp}}}\/}\nolimits\!\left(\eta,\ell\right)=\eta+(\eta^{2}+\ell(\ell+1))^{{1/2}}.

§33.2(ii) Regular Solution \mathop{F_{{\ell}}\/}\nolimits\!\left(\eta,\rho\right)

The function \mathop{F_{{\ell}}\/}\nolimits\!\left(\eta,\rho\right) is recessive (§2.7(iii)) at \rho=0, and is defined by

33.2.3\mathop{F_{{\ell}}\/}\nolimits\!\left(\eta,\rho\right)=\mathop{C_{{\ell}}\/}\nolimits\!\left(\eta\right)2^{{-\ell-1}}(\mp i)^{{\ell+1}}\mathop{M_{{\pm i\eta,\ell+\frac{1}{2}}}\/}\nolimits\!\left(\pm 2i\rho\right),

or equivalently

33.2.4\mathop{F_{{\ell}}\/}\nolimits\!\left(\eta,\rho\right)=\mathop{C_{{\ell}}\/}\nolimits\!\left(\eta\right)\rho^{{\ell+1}}e^{{\mp i\rho}}\mathop{M\/}\nolimits\!\left(\ell+1\mp i\eta,2\ell+2,\pm 2i\rho\right),

where \mathop{M_{{\kappa,\mu}}\/}\nolimits\!\left(z\right) and \mathop{M\/}\nolimits\!\left(a,b,z\right) are defined in §§13.14(i) and 13.2(i), and

33.2.5\mathop{C_{{\ell}}\/}\nolimits\!\left(\eta\right)=\frac{2^{\ell}e^{{-\pi\eta/2}}|\mathop{\Gamma\/}\nolimits\!\left(\ell+1+i\eta\right)|}{(2\ell+1)!}.

The choice of ambiguous signs in (33.2.3) and (33.2.4) is immaterial, provided that either all upper signs are taken, or all lower signs are taken. This is a consequence of Kummer’s transformation (§13.2(vii)).

\mathop{F_{{\ell}}\/}\nolimits\!\left(\eta,\rho\right) is a real and analytic function of \rho on the open interval 0<\rho<\infty, and also an analytic function of \eta when -\infty<\eta<\infty.

The normalizing constant \mathop{C_{{\ell}}\/}\nolimits\!\left(\eta\right) is always positive, and has the alternative form

33.2.6\mathop{C_{{\ell}}\/}\nolimits\!\left(\eta\right)=\dfrac{2^{\ell}\left((2\pi\eta/(e^{{2\pi\eta}}-1))\prod _{{k=1}}^{\ell}(\eta^{2}+k^{2})\right)^{{\ifrac{1}{2}}}}{(2\ell+1)!}.

§33.2(iii) Irregular Solutions \mathop{G_{{\ell}}\/}\nolimits\!\left(\eta,\rho\right),\mathop{{H^{{\pm}}_{{\ell}}}\/}\nolimits\!\left(\eta,\rho\right)

The functions \mathop{{H^{{\pm}}_{{\ell}}}\/}\nolimits\!\left(\eta,\rho\right) are defined by

33.2.7\mathop{{H^{{\pm}}_{{\ell}}}\/}\nolimits\!\left(\eta,\rho\right)=(\mp i)^{\ell}e^{{(\pi\eta/2)\pm i\mathop{{\sigma _{{\ell}}}\/}\nolimits\!\left(\eta\right)}}\mathop{W_{{\mp i\eta,\ell+\frac{1}{2}}}\/}\nolimits\!\left(\mp 2i\rho\right),

or equivalently

33.2.8\mathop{{H^{{\pm}}_{{\ell}}}\/}\nolimits\!\left(\eta,\rho\right)=e^{{\pm i\mathop{{\theta _{{\ell}}}\/}\nolimits\!\left(\eta,\rho\right)}}(\mp 2i\rho)^{{\ell+1\pm i\eta}}\mathop{U\/}\nolimits\!\left(\ell+1\pm i\eta,2\ell+2,\mp 2i\rho\right),

where \mathop{W_{{\kappa,\mu}}\/}\nolimits\!\left(z\right), \mathop{U\/}\nolimits\!\left(a,b,z\right) are defined in §§13.14(i) and 13.2(i),

33.2.9\mathop{{\theta _{{\ell}}}\/}\nolimits\!\left(\eta,\rho\right)=\rho-\eta\mathop{\ln\/}\nolimits\!\left(2\rho\right)-\tfrac{1}{2}\ell\pi+\mathop{{\sigma _{{\ell}}}\/}\nolimits\!\left(\eta\right),

and

33.2.10\mathop{{\sigma _{{\ell}}}\/}\nolimits\!\left(\eta\right)=\mathop{\mathrm{ph}\/}\nolimits\mathop{\Gamma\/}\nolimits\!\left(\ell+1+i\eta\right),

the branch of the phase in (33.2.10) being zero when \eta=0 and continuous elsewhere. \mathop{{\sigma _{{\ell}}}\/}\nolimits\!\left(\eta\right) is the Coulomb phase shift.

\mathop{{H^{{+}}_{{\ell}}}\/}\nolimits\!\left(\eta,\rho\right) and \mathop{{H^{{-}}_{{\ell}}}\/}\nolimits\!\left(\eta,\rho\right) are complex conjugates, and their real and imaginary parts are given by

33.2.11
\mathop{{H^{{+}}_{{\ell}}}\/}\nolimits\!\left(\eta,\rho\right)=\mathop{G_{{\ell}}\/}\nolimits\!\left(\eta,\rho\right)+i\mathop{F_{{\ell}}\/}\nolimits\!\left(\eta,\rho\right),
\mathop{{H^{{-}}_{{\ell}}}\/}\nolimits\!\left(\eta,\rho\right)=\mathop{G_{{\ell}}\/}\nolimits\!\left(\eta,\rho\right)-i\mathop{F_{{\ell}}\/}\nolimits\!\left(\eta,\rho\right).

As in the case of \mathop{F_{{\ell}}\/}\nolimits\!\left(\eta,\rho\right), the solutions \mathop{{H^{{\pm}}_{{\ell}}}\/}\nolimits\!\left(\eta,\rho\right) and \mathop{G_{{\ell}}\/}\nolimits\!\left(\eta,\rho\right) are analytic functions of \rho when 0<\rho<\infty. Also, e^{{\mp i\mathop{{\sigma _{{\ell}}}\/}\nolimits\!\left(\eta\right)}}\mathop{{H^{{\pm}}_{{\ell}}}\/}\nolimits\!\left(\eta,\rho\right) are analytic functions of \eta when -\infty<\eta<\infty.

§33.2(iv) Wronskians and Cross-Product