4.5 Inequalities4.7 Derivatives and Differential Equations

§4.6 Power Series

Contents

§4.6(i) Logarithms

4.6.1\mathop{\ln\/}\nolimits\!\left(1+z\right)=z-\tfrac{1}{2}z^{2}+\tfrac{1}{3}z^{3}-\cdots,|z|\leq 1, z\neq-1,
4.6.2\mathop{\ln\/}\nolimits z=\left(\frac{z-1}{z}\right)+\frac{1}{2}\left(\frac{z-1}{z}\right)^{2}+\frac{1}{3}\left(\frac{z-1}{z}\right)^{3}+\cdots,\realpart{z}\geq\frac{1}{2},
4.6.3\mathop{\ln\/}\nolimits z=(z-1)-\tfrac{1}{2}(z-1)^{2}+\tfrac{1}{3}(z-1)^{3}-\cdots,|z-1|\leq 1, z\neq 0,
4.6.4\mathop{\ln\/}\nolimits z=2\left(\left(\frac{z-1}{z+1}\right)+\frac{1}{3}\left(\frac{z-1}{z+1}\right)^{3}+\frac{1}{5}\left(\frac{z-1}{z+1}\right)^{5}+\cdots\right),\realpart{z}\geq 0, z\neq 0,
4.6.5\mathop{\ln\/}\nolimits\!\left(\frac{z+1}{z-1}\right)=2\left(\frac{1}{z}+\frac{1}{3z^{3}}+\frac{1}{5z^{5}}+\cdots\right),|z|\geq 1, z\neq\pm 1,

§4.6(ii) Powers

Binomial Expansion

4.6.7(1+z)^{a}=1+\frac{a}{1!}z+\frac{a(a-1)}{2!}z^{2}+\frac{a(a-1)(a-2)}{3!}z^{3}+\cdots,

valid when a is any real or complex constant and |z|<1. If a=0,1,2,\dots, then the series terminates and z is unrestricted.