21.4 Graphics21.6 Products

§21.5 Modular Transformations

Contents

§21.5(i) Riemann Theta Functions

Let \mathbf{A}, \mathbf{B}, \mathbf{C}, and \mathbf{D} be g\times g matrices with integer elements such that

21.5.1\boldsymbol{{\Gamma}}=\begin{bmatrix}\mathbf{A}&\mathbf{B}\\
\mathbf{C}&\mathbf{D}\end{bmatrix}

is a symplectic matrix, that is,

21.5.2\boldsymbol{{\Gamma}}\mathbf{J}_{{2g}}\boldsymbol{{\Gamma}}^{{\mathrm{T}}}=\mathbf{J}_{{2g}}.

Then

21.5.3\det\boldsymbol{{\Gamma}}=1,

and

21.5.4\mathop{\theta\/}\nolimits\!\left(\left[[\mathbf{C}\boldsymbol{{\Omega}}+\mathbf{D}]^{{-1}}\right]^{{\mathrm{T}}}\mathbf{z}\middle|[\mathbf{A}\boldsymbol{{\Omega}}+\mathbf{B}][\mathbf{C}\boldsymbol{{\Omega}}+\mathbf{D}]^{{-1}}\right)=\xi(\boldsymbol{{\Gamma}})\sqrt{\det[\mathbf{C}\boldsymbol{{\Omega}}+\mathbf{D}]}e^{{\pi i\mathbf{z}\cdot\left[[\mathbf{C}\boldsymbol{{\Omega}}+\mathbf{D}]^{{-1}}\mathbf{C}\right]\cdot\mathbf{z}}}\mathop{\theta\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right).

Here \xi(\boldsymbol{{\Gamma}}) is an eighth root of unity, that is, (\xi(\boldsymbol{{\Gamma}}))^{8}=1. For general \boldsymbol{{\Gamma}}, it is difficult to decide which root needs to be used. The choice depends on \boldsymbol{{\Gamma}}, but is independent of \mathbf{z} and \boldsymbol{{\Omega}}. Equation (21.5.4) is the modular transformation property for Riemann theta functions.

The modular transformations form a group under the composition of such transformations, the modular group, which is generated by simpler transformations, for which \xi(\boldsymbol{{\Gamma}}) is determinate:

21.5.5\boldsymbol{{\Gamma}}=\begin{bmatrix}\mathbf{A}&\boldsymbol{{0}}_{g}\\
\boldsymbol{{0}}_{g}&[\mathbf{A}^{{-1}}]^{{\mathrm{T}}}\end{bmatrix}\Rightarrow\mathop{\theta\/}\nolimits\!\left(\mathbf{A}\mathbf{z}\middle|\mathbf{A}\boldsymbol{{\Omega}}\mathbf{A}^{{\mathrm{T}}}\right)=\mathop{\theta\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right).

(\mathbf{A} invertible with integer elements.)

21.5.6\boldsymbol{{\Gamma}}=\begin{bmatrix}\mathbf{I}_{g}&\mathbf{B}\\
\boldsymbol{{0}}_{g}&\mathbf{I}_{g}\end{bmatrix}\Rightarrow\mathop{\theta\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}+\mathbf{B}\right)=\mathop{\theta\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right).

(\mathbf{B} symmetric with integer elements and even diagonal elements.)

21.5.7\boldsymbol{{\Gamma}}=\begin{bmatrix}\mathbf{I}_{g}&\mathbf{B}\\
\boldsymbol{{0}}_{g}&\mathbf{I}_{g}\end{bmatrix}\Rightarrow\mathop{\theta\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}+\mathbf{B}\right)=\mathop{\theta\/}\nolimits\!\left(\mathbf{z}+\tfrac{1}{2}\diag\mathbf{B}\middle|\boldsymbol{{\Omega}}\right).

(\mathbf{B} symmetric with integer elements.) See Heil (1995, p. 24).

21.5.8
\boldsymbol{{\Gamma}}=\begin{bmatrix}\boldsymbol{{0}}_{g}&-\mathbf{I}_{g}\\
\mathbf{I}_{g}&\boldsymbol{{0}}_{g}\end{bmatrix}\Rightarrow  
\mathop{\theta\/}\nolimits\!\left(\boldsymbol{{\Omega}}^{{-1}}\mathbf{z}\middle|-\boldsymbol{{\Omega}}^{{-1}}\right)=\sqrt{\det\left[-i\boldsymbol{{\Omega}}\right]}e^{{\pi i\mathbf{z}\cdot\boldsymbol{{\Omega}}^{{-1}}\cdot\mathbf{z}}}\mathop{\theta\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right),

where the square root assumes its principal value.

§21.5(ii) Riemann Theta Functions with Characteristics

where \kappa(\boldsymbol{{\alpha}},\boldsymbol{{\beta}},\boldsymbol{{\Gamma}}) is a complex number that depends on \boldsymbol{{\alpha}}, \boldsymbol{{\beta}}, and \boldsymbol{{\Gamma}}. However, \kappa(\boldsymbol{{\alpha}},\boldsymbol{{\beta}},\boldsymbol{{\Gamma}}) is independent of \mathbf{z} and \boldsymbol{{\Omega}}. For explicit results in the case g=1, see §20.7(viii).