§35.8 Generalized Hypergeometric Functions of Matrix Argument
Contents
- §35.8(i) Definition
- §35.8(ii) Relations to Other Functions
- §35.8(iii)
Case - §35.8(iv) General Properties
- §35.8(v) Mellin–Barnes Integrals
§35.8(i) Definition
Let
and
be nonnegative integers;
;
;
,
,
. The generalized hypergeometric function
with matrix argument
, numerator
parameters
, and denominator parameters
is
35.8.1
§35.8(ii) Relations to Other Functions
35.8.2
.
35.8.3
.
35.8.4
.

§35.8(iii)
Case
¶ Kummer Transformation
Let
. Then
35.8.5
.
¶ Pfaff–Saalschutz Formula
Let
; one of the
be a
negative integer;
,
,
,
. Then
35.8.6
¶ Thomae Transformation
Again, let
. Then
35.8.7
,
,
.
§35.8(iv) General Properties
¶ Value at
35.8.8
¶ Confluence
35.8.9
35.8.10
¶ Invariance
35.8.11
.
¶ Laplace Transform
35.8.12
.
¶ Euler Integral
35.8.13
.

§35.8(v) Mellin–Barnes Integrals
Multidimensional Mellin–Barnes integrals are established in
Ding et al. (1996) for the functions
and
of matrix argument. A similar result for the
function of matrix argument is given in
Faraut and Korányi (1994, p. 346). These multidimensional integrals reduce to the
classical Mellin–Barnes integrals (§5.19(ii)) in the special case
.
See also Faraut and Korányi (1994, pp. 318–340).

