10.8 Power Series10.10 Continued Fractions

§10.9 Integral Representations

Contents

§10.9(i) Integrals along the Real Line

Mehler–Sonine and Related Integrals

10.9.8
\mathop{J_{{\nu}}\/}\nolimits\!\left(x\right)=\frac{2}{\pi}\int _{0}^{\infty}\mathop{\sin\/}\nolimits(x\mathop{\cosh\/}\nolimits t-\tfrac{1}{2}\nu\pi)\mathop{\cosh\/}\nolimits(\nu t)dt,
\mathop{Y_{{\nu}}\/}\nolimits\!\left(x\right)=-\frac{2}{\pi}\int _{0}^{\infty}\mathop{\cos\/}\nolimits(x\mathop{\cosh\/}\nolimits t-\tfrac{1}{2}\nu\pi)\mathop{\cosh\/}\nolimits(\nu t)dt,|\realpart{\nu}|<1,x>0.

In particular,

10.9.9
\mathop{J_{{0}}\/}\nolimits\!\left(x\right)=\frac{2}{\pi}\int _{0}^{\infty}\mathop{\sin\/}\nolimits\!\left(x\mathop{\cosh\/}\nolimits t\right)dt,x>0,
\mathop{Y_{{0}}\/}\nolimits\!\left(x\right)=-\frac{2}{\pi}\int _{0}^{\infty}\mathop{\cos\/}\nolimits\!\left(x\mathop{\cosh\/}\nolimits t\right)dt,x>0.
10.9.10\mathop{{H^{{(1)}}_{{\nu}}}\/}\nolimits\!\left(z\right)=\frac{e^{{-\frac{1}{2}\nu\pi i}}}{\pi i}\int _{{-\infty}}^{\infty}e^{{iz\mathop{\cosh\/}\nolimits t-\nu t}}dt,0<\mathop{\mathrm{ph}\/}\nolimits z<\pi,
10.9.11\mathop{{H^{{(2)}}_{{\nu}}}\/}\nolimits\!\left(z\right)=-\frac{e^{{\frac{1}{2}\nu\pi i}}}{\pi i}\int _{{-\infty}}^{\infty}e^{{-iz\mathop{\cosh\/}\nolimits t-\nu t}}dt,-\pi<\mathop{\mathrm{ph}\/}\nolimits z<0.
10.9.12
\mathop{J_{{\nu}}\/}\nolimits\!\left(x\right)=\frac{2(\tfrac{1}{2}x)^{{-\nu}}}{\pi^{{\frac{1}{2}}}\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}-\nu\right)}\int _{1}^{\infty}\frac{\mathop{\sin\/}\nolimits\!\left(xt\right)dt}{(t^{2}-1)^{{\nu+\frac{1}{2}}}},
\mathop{Y_{{\nu}}\/}\nolimits\!\left(x\right)=-\frac{2(\tfrac{1}{2}x)^{{-\nu}}}{\pi^{{\frac{1}{2}}}\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}-\nu\right)}\int _{1}^{\infty}\frac{\mathop{\cos\/}\nolimits\!\left(xt\right)dt}{(t^{2}-1)^{{\nu+\frac{1}{2}}}},|\realpart{\nu}|<\tfrac{1}{2}, x>0.
10.9.13\left(\frac{z+\zeta}{z-\zeta}\right)^{{\frac{1}{2}\nu}}\mathop{J_{{\nu}}\/}\nolimits\!\left((z^{2}-\zeta^{2})^{{\frac{1}{2}}}\right)=\frac{1}{\pi}\int _{0}^{\pi}e^{{\zeta\mathop{\cos\/}\nolimits\theta}}\mathop{\cos\/}\nolimits(z\mathop{\sin\/}\nolimits\theta-\nu\theta)d\theta-\frac{\mathop{\sin\/}\nolimits(\nu\pi)}{\pi}\int _{0}^{\infty}e^{{-\zeta\mathop{\cosh\/}\nolimits t-z\mathop{\sinh\/}\nolimits t-\nu t}}dt,\realpart{(z+\zeta)}>0,
10.9.14\left(\frac{z+\zeta}{z-\zeta}\right)^{{\frac{1}{2}\nu}}\mathop{Y_{{\nu}}\/}\nolimits\!\left((z^{2}-\zeta^{2})^{{\frac{1}{2}}}\right)=\frac{1}{\pi}\int _{0}^{\pi}e^{{\zeta\mathop{\cos\/}\nolimits\theta}}\mathop{\sin\/}\nolimits(z\mathop{\sin\/}\nolimits\theta-\nu\theta)d\theta-\frac{1}{\pi}\int _{0}^{\infty}\left(e^{{\nu t+\zeta\mathop{\cosh\/}\nolimits t}}+e^{{-\nu t-\zeta\mathop{\cosh\/}\nolimits t}}\mathop{\cos\/}\nolimits(\nu\pi)\right)\* e^{{-z\mathop{\sinh\/}\nolimits t}}dt,\realpart{(z\pm\zeta)}>0.
10.9.15\left(\frac{z+\zeta}{z-\zeta}\right)^{{\frac{1}{2}\nu}}\mathop{{H^{{(1)}}_{{\nu}}}\/}\nolimits\!\left((z^{2}-\zeta^{2})^{{\frac{1}{2}}}\right)=\frac{1}{\pi i}e^{{-\frac{1}{2}\nu\pi i}}\int _{{-\infty}}^{\infty}e^{{iz\mathop{\cosh\/}\nolimits t+i\zeta\mathop{\sinh\/}\nolimits t-\nu t}}dt,\imagpart{(z\pm\zeta)}>0,
10.9.16\left(\frac{z+\zeta}{z-\zeta}\right)^{{\frac{1}{2}\nu}}\mathop{{H^{{(2)}}_{{\nu}}}\/}\nolimits\!\left((z^{2}-\zeta^{2})^{{\frac{1}{2}}}\right)=-\frac{1}{\pi i}e^{{\frac{1}{2}\nu\pi i}}\int _{{-\infty}}^{\infty}e^{{-iz\mathop{\cosh\/}\nolimits t-i\zeta\mathop{\sinh\/}\nolimits t-\nu t}}dt,\imagpart{(z\pm\zeta)}<0.

§10.9(ii) Contour Integrals

Schläfli’s Integral

10.9.19\mathop{J_{{\nu}}\/}\nolimits\!\left(z\right)=\frac{(\tfrac{1}{2}z)^{\nu}}{2\pi i}\int _{{-\infty}}^{{(0+)}}\mathop{\exp\/}\nolimits\left(t-\frac{z^{2}}{4t}\right)\frac{dt}{t^{{\nu+1}}},

where the integration path is a simple loop contour, and t^{{\nu+1}} is continuous on the path and takes its principal value at the intersection with the positive real axis.

Hankel’s Integrals

In (10.9.20) and (10.9.21) the integration paths are simple loop contours not enclosing t=-1. Also, (t^{2}-1)^{{\nu-\frac{1}{2}}} is continuous on the path, and takes its principal value at the intersection with the interval (1,\infty).

Mellin–Barnes Type Integrals

10.9.22\mathop{J_{{\nu}}\/}\nolimits\!\left(x\right)=\frac{1}{2\pi i}\int _{{-i\infty}}^{{i\infty}}\frac{\mathop{\Gamma\/}\nolimits\!\left(-t\right)(\tfrac{1}{2}x)^{{\nu+2t}}}{\mathop{\Gamma\/}\nolimits\!\left(\nu+t+1\right)}dt,\realpart{\nu}>0, x>0,

where the integration path passes to the left of t=0,1,2,\ldots.

10.9.23\mathop{J_{{\nu}}\/}\nolimits\!\left(z\right)=\frac{1}{2\pi i}\int _{{-\infty-ic}}^{{-\infty+ic}}\frac{\mathop{\Gamma\/}\nolimits\!\left(t\right)}{\mathop{\Gamma\/}\nolimits\!\left(\nu-t+1\right)}(\tfrac{1}{2}z)^{{\nu-2t}}dt,

where c is a positive constant and the integration path encloses the points t=0,-1,-2,\ldots.

For (10.9.22)–(10.9.25) and further integrals of this type see Paris and Kaminski (2001, pp. 114–116).

§10.9(iii) Products

Mellin–Barnes Type

10.9.29\mathop{J_{{\mu}}\/}\nolimits\!\left(x\right)\mathop{J_{{\nu}}\/}\nolimits\!\left(x\right)=\frac{1}{2\pi i}\int _{{-i\infty}}^{{i\infty}}\frac{\mathop{\Gamma\/}\nolimits\!\left(-t\right)\mathop{\Gamma\/}\nolimits\!\left(2t+\mu+\nu+1\right)(\tfrac{1}{2}x)^{{\mu+\nu+2t}}}{\mathop{\Gamma\/}\nolimits\!\left(t+\mu+1\right)\mathop{\Gamma\/}\nolimits\!\left(t+\nu+1\right)\mathop{\Gamma\/}\nolimits\!\left(t+\mu+\nu+1\right)}dt,x>0,

where the path of integration separates the poles of \mathop{\Gamma\/}\nolimits\!\left(-t\right) from those of \mathop{\Gamma\/}\nolimits\!\left(2t+\mu+\nu+1\right). See Paris and Kaminski (2001, p. 116) for related results.

§10.9(iv) Compendia

For collections of integral representations of Bessel and Hankel functions see Erdélyi et al. (1953b, §§7.3 and 7.12), Erdélyi et al. (1954a, pp. 43–48, 51–60, 99–105, 108–115, 123–124, 272–276, and 356–357), Gröbner and Hofreiter (1950, pp. 189–192), Marichev (1983, pp. 191–192 and 196–210), Magnus et al. (1966, §3.6), and Watson (1944, Chapter 6).