Notations ENotations G
Notations F
*ABCDE♦F♦GHIJKLMNOPQRSTUVWXYZ
F_{n}
Fibonacci number; §26.11
\mathop{F_{D}\/}\nolimits
Lauricella’s multivariate hypergeometric function; §19.15
F(x)
Fourier transform; (1.14.1)
\mathop{F\/}\nolimits\!\left(z\right)
Dawson’s integral; (7.2.5)
\mathop{\mathcal{F}\/}\nolimits\!\left(z\right)
Fresnel integral; (7.2.6)
\mathsf{F}(z-1)=\mathop{\psi\/}\nolimits\!\left(z\right)
notation used by Pairman (1919); §5.1
(with \mathop{\psi\/}\nolimits\!\left(z\right): psi (or digamma) function)
\mathop{\mathit{f}\/}\nolimits\!\left(x\right)
Euler’s reciprocal function; (27.14.2)
\mathop{\mathrm{f}\/}\nolimits\!\left(z\right)
auxiliary function for sine and cosine integrals; (6.2.17)
\mathop{\mathrm{f}\/}\nolimits\!\left(z\right)
auxiliary function for Fresnel integrals; (7.2.10)
F_{{\nu}}(z)=\mathop{\mathrm{Me}_{{\nu}}\/}\nolimits\!\left(z,q\right)
notation used by Abramowitz and Stegun (1964, Chapter 20); §28.1
(with \mathop{\mathrm{Me}_{{\nu}}\/}\nolimits\!\left(z,q\right): modified Mathieu function)
F_{s}(x)
Fermi–Dirac integral; (25.12.14)
F_{c}(x)
Fourier cosine transform; (1.14.9)
F_{s}(x)
Fourier sine transform; (1.14.10)
F_{p}(z)
terminant function; (8.22.1)
f_{{\mathit{e},m}}(h)
joining factor for radial Mathieu functions; §28.22(i)
f_{{\mathit{o},m}}(h)
joining factor for radial Mathieu functions; §28.22(i)
F(\phi\backslash\alpha)=\mathop{F\/}\nolimits\!\left(\phi,k\right)
notation used by Abramowitz and Stegun (1964, Chapter 17); §19.1
(with \mathop{F\/}\nolimits\!\left(\phi,k\right): Legendre’s incomplete elliptic integral of the first kind)
\mathop{F\/}\nolimits\!\left(\phi,k\right)
Legendre’s incomplete elliptic integral of the first kind; (19.2.4)
\mathop{F\/}\nolimits\!\left(x,s\right)
periodic zeta function; (25.13.1)
\mathop{F_{{\ell}}\/}\nolimits\!\left(\eta,\rho\right)
regular Coulomb radial function; (33.2.3)
\mathop{F\/}\nolimits\!\left({a,b\atop c};z\right)
hypergeometric function; §15.1
\mathop{F\/}\nolimits\!\left(a,b;c;z\right)
hypergeometric function; (15.2.1)
\mathop{\mathbf{F}\/}\nolimits\!\left({a,b\atop c};z\right)
Olver’s hypergeometric function; §15.1
\mathop{\mathbf{F}\/}\nolimits\!\left(a,b;c;z\right)
Olver’s hypergeometric function; (15.2.2)
f(\epsilon,\ell;r)=\mathop{s\/}\nolimits\!\left(\epsilon,\ell;r\right)
notation used by Greene et al. (1979); §33.1
(with \mathop{s\/}\nolimits\!\left(\epsilon,\ell;r\right): regular Coulomb function)
\mathop{f\/}\nolimits\!\left(\epsilon,\ell;r\right)
regular Coulomb function; (33.14.4)
f^{{(0)}}(\epsilon,\ell;r)=\mathop{f\/}\nolimits\!\left(\epsilon,\ell;r\right)
notation used by Greene et al. (1979); §33.1
(with \mathop{f\/}\nolimits\!\left(\epsilon,\ell;r\right): regular Coulomb function)
\mathop{{{}_{{1}}F_{{1}}}\/}\nolimits\!\left({a\atop b};\mathbf{T}\right)
confluent hypergeometric function of matrix argument (first kind); §35.6(i)
\mathop{{{}_{{1}}F_{{1}}}\/}\nolimits\!\left(a;b;\mathbf{T}\right)
confluent hypergeometric function of matrix argument (first kind); §35.6(i)
\mathop{{{}_{{1}}F_{{1}}}\/}\nolimits\!\left(a;b;\mathbf{T}\right)
confluent hypergeometric function of matrix argument (first kind); §35.1
\mathop{{{}_{{2}}F_{{1}}}\/}\nolimits\!\left({a,b\atop c};\mathbf{T}\right)
hypergeometric function of matrix argument; §35.7(i)
\mathop{{{}_{{2}}F_{{1}}}\/}\nolimits\!\left(a,b;c;\mathbf{T}\right)
hypergeometric function of matrix argument; §35.1
\mathop{{{}_{{2}}F_{{1}}}\/}\nolimits\!\left(a,b;c;\mathbf{T}\right)
hypergeometric function of matrix argument; §35.7(i)
\mathop{{{}_{{2}}F_{{1}}}\/}\nolimits\!\left(a,b;c;z\right)
hypergeometric function; §15.1
\mathop{{{}_{{p}}F_{{q}}}\/}\nolimits\!\left({\mathbf{a}\atop\mathbf{b}};z\right)
generalized hypergeometric function; (16.2.1)
\mathop{{{}_{{p}}F_{{q}}}\/}\nolimits\!\left({\mathbf{a}\atop\mathbf{b}};z\right)
generalized hypergeometric function; §16.5
\mathop{{{}_{{p}}F_{{q}}}\/}\nolimits\!\left({a_{1},\dots,a_{p}\atop b_{1},\dots,b_{q}};z\right)
generalized hypergeometric function; §16.5
\mathop{{{}_{{p}}F_{{q}}}\/}\nolimits\!\left({a_{1},\dots,a_{p}\atop b_{1},\dots,b_{q}};z\right)
generalized hypergeometric function; (16.2.1)
\mathop{{{}_{{p}}F_{{q}}}\/}\nolimits\!\left({a_{1},a_{2},\dots,a_{p}\atop b_{1},b_{2},\dots,b_{q}};\mathbf{T}\right)
generalized hypergeometric function of matrix argument; §35.8(i)
\mathop{{{}_{{p}}F_{{q}}}\/}\nolimits\!\left(\mathbf{a};\mathbf{b};z\right)
generalized hypergeometric function; §16.5
\mathop{{{}_{{p}}F_{{q}}}\/}\nolimits\!\left(\mathbf{a};\mathbf{b};z\right)
generalized hypergeometric function; (16.2.1)
\mathop{{{}_{{p}}F_{{q}}}\/}\nolimits\!\left(a_{1},\dots,a_{p};b_{1},\dots,b_{q};z\right)
generalized hypergeometric function; §16.5
\mathop{{{}_{{p}}F_{{q}}}\/}\nolimits\!\left(a_{1},\dots,a_{p};b_{1},\dots,b_{q};z\right)
generalized hypergeometric function; (16.2.1)
\mathop{{{}_{{p}}F_{{q}}}\/}\nolimits\!\left(a_{1},a_{2},\dots,a_{p};b_{1},b_{2},\dots,b_{q};\mathbf{T}\right)
generalized hypergeometric function of matrix argument; §35.8(i)
\mathop{{{}_{{p}}F_{{q}}}\/}\nolimits\!\left(a_{1},a_{2},\dots,a_{p};b_{1},b_{2},\dots,b_{q};\mathbf{T}\right)
generalized hypergeometric function of matrix argument; §35.1
\mathop{{{}_{{2}}{\mathbf{F}}_{{1}}}\/}\nolimits\!\left(a,b;c;z\right)
Olver’s hypergeometric function; §15.1
\mathop{{{}_{{p}}{\mathbf{F}}_{{q}}}\/}\nolimits\!\left({\mathbf{a}\atop\mathbf{b}};z\right)
scaled (or Olver’s) generalized hypergeometric function; (16.2.5)
F(a,b;t:q)
alternative notation for specialization of \mathop{{{}_{{2}}\phi _{{1}}}\/}\nolimits; Fine (1988); §17.1
\mathop{{F_{{1}}}\/}\nolimits\!\left(\alpha;\beta,\beta^{{\prime}};\gamma;x,y\right)
Appell function; (16.13.1)
\mathop{{F_{{2}}}\/}\nolimits\!\left(\alpha;\beta,\beta^{{\prime}};\gamma,\gamma^{{\prime}};x,y\right)
Appell function; (16.13.2)
\mathop{{F_{{3}}}\/}\nolimits\!\left(\alpha,\alpha^{{\prime}};\beta,\beta^{{\prime}};\gamma;x,y\right)
Appell function; (16.13.3)
\mathop{{F_{{4}}}\/}\nolimits\!\left(\alpha;\beta;\gamma,\gamma^{{\prime}};x,y\right)
Appell function; (16.13.4)
\mathop{\mathrm{Fc}_{{m}}\/}\nolimits\!\left(z,h\right)
Mathieu function; §28.26(i)
\mathop{\mathrm{Fe}_{{n}}\/}\nolimits\!\left(z,q\right)
modified Mathieu function; (28.20.6)
\mathop{\mathrm{fe}_{{n}}\/}\nolimits\!\left(z,q\right)
second solution, Mathieu’s equation; (28.5.1)
\mathrm{Fey}_{n}(z,q)=\sqrt{\tfrac{1}{2}\pi}g_{{\mathit{e},n}}(h)\mathop{\mathrm{ce}_{{n}}\/}\nolimits\!\left(0,q\right)\mathop{{\mathrm{Mc}^{{(2)}}_{{n}}}\/}\nolimits\!\left(z,h\right)
notation used by Arscott (1964b), McLachlan (1947); §28.1
(with \mathop{\mathrm{ce}_{{n}}\/}\nolimits\!\left(z,q\right): Mathieu function and \mathop{{\mathrm{Mc}^{{(j)}}_{{n}}}\/}\nolimits\!\left(z,h\right): radial Mathieu function)
\mathop{\mathrm{Fs}_{{m}}\/}\nolimits\!\left(z,h\right)
Mathieu function; §28.26(i)