5 Gamma Function5.2 Definitions

§5.1 Special Notation

(For other notation see Notation for the Special Functions.)

j,m,n nonnegative integers.
k nonnegative integer, except in §5.20.
x,y real variables.
z=x+iy complex variable.
a,b,q,s,w real or complex variables with |q|<1.
\delta arbitrary small positive constant.
\EulerConstant Euler’s constant (§5.2(ii)).
primes derivatives with respect to the variable.

The main functions treated in this chapter are the gamma function \mathop{\Gamma\/}\nolimits\!\left(z\right), the psi function (or digamma function) \mathop{\psi\/}\nolimits\!\left(z\right), the beta function \mathop{\mathrm{B}\/}\nolimits\!\left(a,b\right), and the q-gamma function \mathop{\Gamma _{{q}}\/}\nolimits\!\left(z\right).

The notation \mathop{\Gamma\/}\nolimits\!\left(z\right) is due to Legendre. Alternative notations for this function are: \Pi(z-1) (Gauss) and (z-1)!. Alternative notations for the psi function are: \Psi(z-1) (Gauss) Jahnke and Emde (1945); \Psi(z) Davis (1933); \mathsf{F}(z-1) Pairman (1919).