1.7 Inequalities1.9 Calculus of a Complex Variable

§1.8 Fourier Series

Contents

§1.8(i) Definitions and Elementary Properties

Formally,

1.8.1f(x)=\tfrac{1}{2}a_{0}+\sum^{\infty}_{{n=1}}(a_{n}\mathop{\cos\/}\nolimits\!\left(nx\right)+b_{n}\mathop{\sin\/}\nolimits\!\left(nx\right)),
1.8.2
a_{n}=\frac{1}{\pi}\int^{\pi}_{{-\pi}}f(x)\mathop{\cos\/}\nolimits\!\left(nx\right)dx,n=0,1,2,\dots,
b_{n}=\frac{1}{\pi}\int^{\pi}_{{-\pi}}f(x)\mathop{\sin\/}\nolimits\!\left(nx\right)dx,n=1,2,\dots.

The series (1.8.1) is called the Fourier series of f(x), and a_{n},b_{n} are the Fourier coefficients of f(x).

If f(-x)=f(x), then b_{n}=0 for all n.

If f(-x)=-f(x), then a_{n}=0 for all n.

Alternative Form

Bessel’s Inequality

Asymptotic Estimates of Coefficients

If f(x) is of period 2\pi, and f^{{(m)}}(x) is piecewise continuous, then

1.8.7a_{n},b_{n},c_{n}=\mathop{o\/}\nolimits\!\left(n^{{-m}}\right),n\to\infty.

Uniqueness of Fourier Series

If f(x) and g(x) are continuous, have the same period and same Fourier coefficients, then f(x)=g(x) for all x.

Lebesgue Constants

1.8.8L_{n}=\frac{1}{\pi}\int^{\pi}_{0}\frac{\left|\mathop{\sin\/}\nolimits\!\left(n+\frac{1}{2}\right)t\right|}{\mathop{\sin\/}\nolimits\!\left(\frac{1}{2}t\right)}dt,n=0,1,\dots.

Riemann–Lebesgue Lemma

For f(x) piecewise continuous on [a,b] and real \lambda,

1.8.10\int^{b}_{a}f(x)e^{{i\lambda x}}dx\to 0,as \lambda\to\infty.

(1.8.10) continues to apply if either a or b or both are infinite and/or f(x) has finitely many singularities in (a,b), provided that the integral converges uniformly (§1.5(iv)) at a,b, and the singularities for all sufficiently large \lambda.

§1.8(ii) Convergence

Let f(x) be an absolutely integrable function of period 2\pi, and continuous except at a finite number of points in any bounded interval. Then the series (1.8.1) converges to the sum

1.8.11\tfrac{1}{2}f(x-)+\tfrac{1}{2}f(x+)

at every point at which f(x) has both a left-hand derivative (that is, (1.4.4) applies when h\to 0-) and a right-hand derivative (that is, (1.4.4) applies when h\to 0+). The convergence is non-uniform, however, at points where f(x-)\neq f(x+); see §6.16(i).

For other tests for convergence see Titchmarsh (1962, pp. 405–410).

§1.8(iii) Integration and Differentiation

If a_{n} and b_{n} are the Fourier coefficients of a piecewise continuous function f(x) on [0,2\pi], then

1.8.12\int^{x}_{0}(f(t)-\tfrac{1}{2}a_{0})dt=\sum^{\infty}_{{n=1}}\frac{a_{n}\mathop{\sin\/}\nolimits\!\left(nx\right)+b_{n}(1-\mathop{\cos\/}\nolimits\!\left(nx\right))}{n},0\leq x\leq 2\pi.

If a function f(x)\in\mathop{C^{{2}}\/}\nolimits[0,2\pi] is periodic, with period 2\pi, then the series obtained by differentiating the Fourier series for f(x) term by term converges at every point to f^{{\prime}}(x).

§1.8(iv) Transformations

Parseval’s Formula

1.8.13\frac{1}{\pi}\int^{\pi}_{{-\pi}}f(x)g(x)dx=\tfrac{1}{2}a_{0}a^{{\prime}}_{0}+\sum^{\infty}_{{n=1}}(a_{n}a^{{\prime}}_{n}+b_{n}b^{{\prime}}_{n}),

when f(x) and g(x) are square-integrable and a_{n},b_{n} and a^{{\prime}}_{n},b^{{\prime}}_{n} are their respective Fourier coefficients.

Poisson’s Summation Formula

Suppose that f(x) is twice continuously differentiable and f(x) and |f^{{\prime\prime}}(x)| are integrable over (-\infty,\infty). Then

1.8.14\sum^{\infty}_{{n=-\infty}}f(x+n)=\sum^{\infty}_{{n=-\infty}}e^{{2\pi inx}}\int^{\infty}_{{-\infty}}f(t)e^{{-2\pi int}}dt.

An alternative formulation is as follows. Suppose that f(x) is continuous and of bounded variation on [0,\infty). Suppose also that f(x) is integrable on [0,\infty) and f(x)\to 0 as x\to\infty. Then

1.8.15\tfrac{1}{2}f(0)+\sum^{\infty}_{{n=1}}f(n)=\int^{\infty}_{0}f(x)dx+2\sum^{\infty}_{{n=1}}\int^{\infty}_{0}f(x)\mathop{\cos\/}\nolimits\!\left(2\pi nx\right)dx.

As a special case

1.8.16\sum _{{n=-\infty}}^{{\infty}}e^{{-(n+x)^{2}\omega}}={\sqrt{\frac{\pi}{\omega}}\*\left(1+2\sum _{{n=1}}^{{\infty}}e^{{-n^{2}\pi^{2}/\omega}}\mathop{\cos\/}\nolimits\!\left(2n\pi x\right)\right)},\realpart{\omega}>0.

§1.8(v) Examples

For collections of Fourier-series expansions see Prudnikov et al. (1986a, v. 1, pp. 725–740), Gradshteyn and Ryzhik (2000, pp. 45–49), and Oberhettinger (1973).