13.6 Relations to Other Functions13.8 Asymptotic Approximations for Large Parameters

§13.7 Asymptotic Expansions for Large Argument

Contents

§13.7(ii) Error Bounds

See accompanying text
Figure 13.7.1: Regions {\textbf{R}}_{1}, {\textbf{R}}_{2}, \overline{\textbf{R}}_{2}, {\textbf{R}}_{3}, and \overline{\textbf{R}}_{3} are the closures of the indicated unshaded regions bounded by the straight lines and circular arcs centered at the origin, with r=|b-2a|. Magnify
13.7.4\mathop{U\/}\nolimits\!\left(a,b,z\right)=z^{{-a}}\sum _{{s=0}}^{{n-1}}\frac{\left(a\right)_{{s}}\left(a-b+1\right)_{{s}}}{s!}(-z)^{{-s}}+\varepsilon _{{n}}(z),

where

13.7.5\left|\varepsilon _{{n}}(z)\right|,~{}\beta^{{-1}}\left|\varepsilon _{{n}}^{{\prime}}(z)\right|\leq 2\alpha C_{n}\left|\frac{\left(a\right)_{{n}}\left(a-b+1\right)_{{n}}}{n!z^{{a+n}}}\right|\mathop{\exp\/}\nolimits\!\left(\frac{2\alpha\rho C_{1}}{|z|}\right),

and with the notation of Figure 13.7.1

13.7.6
C_{n}=1,
\chi(n),
\left(\chi(n)+\sigma\nu^{2}n\right)\nu^{n},

according as

13.7.7
z\in\textbf{R}_{1},
z\in\textbf{R}_{2}\cup\overline{\textbf{R}}_{2},
z\in\textbf{R}_{3}\cup\overline{\textbf{R}}_{3},

respectively, with

13.7.8
\sigma=\left|\ifrac{(b-2a)}{z}\right|,
\nu=\left(\tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-4\sigma^{2}}\right)^{{-\ifrac{1}{2}}},
\chi(n)=\sqrt{\pi}\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}n+1\right)/\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}n+\tfrac{1}{2}\right).

Also, when z\in\textbf{R}_{1}\cup\textbf{R}_{2}\cup\overline{\textbf{R}}_{2}

13.7.9
\alpha=\frac{1}{1-\sigma},
\beta=\frac{1-\sigma^{2}+\sigma|z|^{{-1}}}{2(1-\sigma)},
\rho=\tfrac{1}{2}\left|2a^{2}-2ab+b\right|+\frac{\sigma(1+\frac{1}{4}\sigma)}{(1-\sigma)^{2}},

and when z\in\textbf{R}_{3}\cup\overline{\textbf{R}}_{3} \sigma is replaced by \nu\sigma and |z|^{{-1}} is replaced by \nu|z|^{{-1}} everywhere in (13.7.9).

For numerical values of \chi(n) see Table 9.7.1.

Corresponding error bounds for (13.7.2) can be constructed by combining (13.2.41) with (13.7.4)–(13.7.9).

§13.7(iii) Exponentially-Improved Expansion

For proofs see Olver (1991b, 1993a). For extensions to hyperasymptotic expansions see Olde Daalhuis and Olver (1995a).