7.7 Integral Representations7.9 Continued Fractions

§7.8 Inequalities

Let \mathop{\mathsf{M}\/}\nolimits\!\left(x\right) denote Mills’ ratio:

7.8.1\mathop{\mathsf{M}\/}\nolimits\!\left(x\right)=\frac{\int _{x}^{\infty}e^{{-t^{2}}}dt}{e^{{-x^{2}}}}=e^{{x^{2}}}\int _{x}^{\infty}e^{{-t^{2}}}dt.

(Other notations are often used.) Then

7.8.2\frac{1}{x+\sqrt{x^{2}+2}}<\mathop{\mathsf{M}\/}\nolimits\!\left(x\right)\leq\frac{1}{x+\sqrt{x^{2}+(4/\pi)}},x\geq 0,
7.8.3\frac{\sqrt{\pi}}{2\sqrt{\pi}x+2}\leq\mathop{\mathsf{M}\/}\nolimits\!\left(x\right)<\frac{1}{x+1},x\geq 0,
7.8.4\mathop{\mathsf{M}\/}\nolimits\!\left(x\right)<\frac{2}{3x+\sqrt{x^{2}+4}},x>-\tfrac{1}{2}\sqrt{2},
7.8.5\frac{x^{2}}{2x^{2}+1}\leq\frac{x^{2}(2x^{2}+5)}{4x^{4}+12x^{2}+3}\leq x\mathop{\mathsf{M}\/}\nolimits\!\left(x\right)<\frac{2x^{4}+9x^{2}+4}{4x^{4}+20x^{2}+15}<\frac{x^{2}+1}{2x^{2}+3},x\geq 0.