36.3 Visualizations of Canonical Integrals36.5 Stokes Sets

§36.4 Bifurcation Sets

Contents

§36.4(i) Formulas

Critical Points for Cuspoids

Critical Points for Umbilics

These are real solutions \{ s_{j}(\mathbf{x}),t_{j}(\mathbf{x})\}, 1\leq j\leq j_{{\max}}(\mathbf{x})\leq 4, of

36.4.2
\frac{\partial}{\partial s}\mathop{\Phi^{{(\mathrm{U})}}\/}\nolimits\!\left(s_{j}(\mathbf{x}),t_{j}(\mathbf{x});\mathbf{x}\right)=0,
\frac{\partial}{\partial t}\mathop{\Phi^{{(\mathrm{U})}}\/}\nolimits\!\left(s_{j}(\mathbf{x}),t_{j}(\mathbf{x});\mathbf{x}\right)=0.

Bifurcation (Catastrophe) Set for Cuspoids

This is the codimension-one surface in \mathbf{x} space where critical points coalesce, satisfying (36.4.1) and

36.4.3\frac{{\partial}^{2}}{{\partial t}^{2}}\mathop{\Phi _{{K}}\/}\nolimits\!\left(t;\mathbf{x}\right)=0.

Bifurcation (Catastrophe) Set for Umbilics

This is the codimension-one surface in \mathbf{x} space where critical points coalesce, satisfying (36.4.2) and

36.4.4\frac{{\partial}^{2}}{{\partial s}^{2}}\mathop{\Phi^{{(\mathrm{U})}}\/}\nolimits\!\left(s,t;\mathbf{x}\right)\frac{{\partial}^{2}}{{\partial t}^{2}}\mathop{\Phi^{{(\mathrm{U})}}\/}\nolimits\!\left(s,t;\mathbf{x}\right)-\left(\frac{{\partial}^{2}}{\partial s\partial t}\mathop{\Phi^{{(\mathrm{U})}}\/}\nolimits\!\left(s,t;\mathbf{x}\right)\right)^{2}=0.

Special Cases

K=1, fold bifurcation set:

36.4.5x=0.

K=2, cusp bifurcation set:

36.4.627x^{2}=-8y^{3}.

K=3, swallowtail bifurcation set:

36.4.7
x=3t^{2}(z+5t^{2}),
y=-t(3z+10t^{2}),-\infty<t<\infty.

Swallowtail self-intersection line:

36.4.8
y=0,
z\leq 0,
x=\tfrac{9}{20}z^{2}.

Swallowtail cusp lines (ribs):

36.4.9
z\leq 0,
x=-\tfrac{3}{20}z^{2},
10y^{2}=-4z^{3}.

Elliptic umbilic bifurcation set (codimension three): for fixed z, the section of the bifurcation set is a three-cusped astroid

36.4.10
x=\tfrac{1}{3}z^{2}(-\mathop{\cos\/}\nolimits\!\left(2\phi\right)-2\mathop{\cos\/}\nolimits\phi),
y=\tfrac{1}{3}z^{2}(\mathop{\sin\/}\nolimits\!\left(2\phi\right)-2\mathop{\sin\/}\nolimits\phi),0\leq\phi\leq 2\pi.

Elliptic umbilic cusp lines (ribs):

36.4.11x+iy=-z^{2}\mathop{\exp\/}\nolimits\!\left(\tfrac{2}{3}i\pi m\right),m=0,1,2.

Hyperbolic umbilic bifurcation set (codimension three):

36.4.12
x=-\tfrac{1}{12}z^{2}(\mathop{\exp\/}\nolimits\!\left(2\tau\right)\pm 2\mathop{\exp\/}\nolimits\!\left(-\tau\right)),
y=-\tfrac{1}{12}z^{2}(\mathop{\exp\/}\nolimits\!\left(-2\tau\right)\pm 2\mathop{\exp\/}\nolimits\!\left(\tau\right)),-\infty\leq\tau<\infty.

The + sign labels the cusped sheet; the - sign labels the sheet that is smooth for z\not=0 (see Figure 36.4.4).

Hyperbolic umbilic cusp line (rib):

36.4.13x=y=-\tfrac{1}{4}z^{2}.

For derivations of the results in this subsection see Poston and Stewart (1978, Chapter 9).

§36.4(ii) Visualizations

See accompanying text
Figure 36.4.1: Bifurcation set of cusp catastrophe. Magnify
See accompanying text
Figure 36.4.2: Bifurcation set of swallowtail catastrophe. Magnify
See accompanying text
Figure 36.4.3: Bifurcation set of elliptic umbilic catastrophe. Magnify
See accompanying text
Figure 36.4.4: Bifurcation set of hyperbolic umbilic catastrophe. Magnify