15.3 Graphics15.5 Derivatives and Contiguous Functions

§15.4 Special Cases

Contents

§15.4(i) Elementary Functions

The following results hold for principal branches when |z|<1, and by analytic continuation elsewhere. Exceptions are (15.4.8) and (15.4.10), that hold for |z|<\ifrac{\pi}{4}, and (15.4.12), (15.4.14), and (15.4.16), that hold for |z|<\ifrac{\pi}{2}.

compare §15.2(ii).

15.4.7\mathop{F\/}\nolimits\!\left(a,\tfrac{1}{2}+a;\tfrac{1}{2};z^{2}\right)=\tfrac{1}{2}\left((1+z)^{{-2a}}+(1-z)^{{-2a}}\right),
15.4.8\mathop{F\/}\nolimits\!\left(a,\tfrac{1}{2}+a;\tfrac{1}{2};-{\mathop{\tan\/}\nolimits^{{2}}}z\right)=(\mathop{\cos\/}\nolimits z)^{{2a}}\mathop{\cos\/}\nolimits\!\left(2az\right).
15.4.9\mathop{F\/}\nolimits\!\left(a,\tfrac{1}{2}+a;\tfrac{3}{2};z^{2}\right)=\frac{1}{(2-4a)z}\left((1+z)^{{1-2a}}-(1-z)^{{1-2a}}\right),
15.4.10\mathop{F\/}\nolimits\!\left(a,\tfrac{1}{2}+a;\tfrac{3}{2};-{\mathop{\tan\/}\nolimits^{{2}}}z\right)=(\mathop{\cos\/}\nolimits z)^{{2a}}\frac{\mathop{\sin\/}\nolimits\!\left((1-2a)z\right)}{(1-2a)\mathop{\sin\/}\nolimits z}.
15.4.11\mathop{F\/}\nolimits\!\left(-a,a;\tfrac{1}{2};-z^{2}\right)=\tfrac{1}{2}\left(\left(\sqrt{1+z^{2}}+z\right)^{{2a}}+\left(\sqrt{1+z^{2}}-z\right)^{{2a}}\right),
15.4.12\mathop{F\/}\nolimits\!\left(-a,a;\tfrac{1}{2};{\mathop{\sin\/}\nolimits^{{2}}}z\right)=\mathop{\cos\/}\nolimits\!\left(2az\right).
15.4.13\mathop{F\/}\nolimits\!\left(a,1-a;\tfrac{1}{2};-z^{2}\right)=\frac{1}{2\sqrt{1+z^{2}}}\left(\left(\sqrt{1+z^{2}}+z\right)^{{2a-1}}+\left(\sqrt{1+z^{2}}-z\right)^{{2a-1}}\right),
15.4.14\mathop{F\/}\nolimits\!\left(a,1-a;\tfrac{1}{2};{\mathop{\sin\/}\nolimits^{{2}}}z\right)=\frac{\mathop{\cos\/}\nolimits\!\left((2a-1)z\right)}{\mathop{\cos\/}\nolimits z}.
15.4.15\mathop{F\/}\nolimits\!\left(a,1-a;\tfrac{3}{2};-z^{2}\right)=\frac{1}{(2-4a)z}\left(\left(\sqrt{1+z^{2}}+z\right)^{{1-2a}}-\left(\sqrt{1+z^{2}}-z\right)^{{1-2a}}\right),
15.4.16\mathop{F\/}\nolimits\!\left(a,1-a;\tfrac{3}{2};{\mathop{\sin\/}\nolimits^{{2}}}z\right)=\frac{\mathop{\sin\/}\nolimits\!\left((2a-1)z\right)}{(2a-1)\mathop{\sin\/}\nolimits z}.
15.4.17\mathop{F\/}\nolimits\!\left(a,\tfrac{1}{2}+a;1+2a;z\right)=\left(\tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-z}\right)^{{-2a}},
15.4.18\mathop{F\/}\nolimits\!\left(a,\tfrac{1}{2}+a;2a;z\right)=\frac{1}{\sqrt{1-z}}\left(\tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-z}\right)^{{1-2a}}.
15.4.19\mathop{F\/}\nolimits\!\left(a+1,b;a;z\right)=\left(1-(1-(\ifrac{b}{a}))z\right)(1-z)^{{-1-b}}.

For an extensive list of elementary representations see Prudnikov et al. (1990, pp. 468–488).

§15.4(ii) Argument Unity

Dougall’s Bilateral Sum

This is a generalization of (15.4.20). If a,b are not integers and \realpart{(c+d-a-b)}>1, then

15.4.25\sum _{{n=-\infty}}^{{\infty}}\frac{\mathop{\Gamma\/}\nolimits\!\left(a+n\right)\mathop{\Gamma\/}\nolimits\!\left(b+n\right)}{\mathop{\Gamma\/}\nolimits\!\left(c+n\right)\mathop{\Gamma\/}\nolimits\!\left(d+n\right)}=\frac{\pi^{2}}{\mathop{\sin\/}\nolimits\!\left(\pi a\right)\mathop{\sin\/}\nolimits\!\left(\pi b\right)}\*\frac{\mathop{\Gamma\/}\nolimits\!\left(c+d-a-b-1\right)}{\mathop{\Gamma\/}\nolimits\!\left(c-a\right)\mathop{\Gamma\/}\nolimits\!\left(d-a\right)\mathop{\Gamma\/}\nolimits\!\left(c-b\right)\mathop{\Gamma\/}\nolimits\!\left(d-b\right)}.

§15.4(iii) Other Arguments

15.4.26\mathop{F\/}\nolimits\!\left(a,b;a-b+1;-1\right)=\frac{\mathop{\Gamma\/}\nolimits\!\left(a-b+1\right)\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}a+1\right)}{\mathop{\Gamma\/}\nolimits\!\left(a+1\right)\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}a-b+1\right)}.
15.4.27\mathop{F\/}\nolimits\!\left(1,a;a+1;-1\right)=\tfrac{1}{2}a\left(\mathop{\psi\/}\nolimits\!\left(\tfrac{1}{2}a+\tfrac{1}{2}\right)-\mathop{\psi\/}\nolimits\!\left(\tfrac{1}{2}a\right)\right).
15.4.28\mathop{F\/}\nolimits\!\left(a,b;\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{2};\tfrac{1}{2}\right)=\sqrt{\pi}\frac{\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{2}\right)}{\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}a+\tfrac{1}{2}\right)\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}b+\tfrac{1}{2}\right)}.
15.4.29\mathop{F\/}\nolimits\!\left(a,b;\tfrac{1}{2}a+\tfrac{1}{2}b+1;\tfrac{1}{2}\right)=\frac{2\sqrt{\pi}}{a-b}\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}a+\tfrac{1}{2}b+1\right)\*\left(\frac{1}{\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}a\right)\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}b+\tfrac{1}{2}\right)}-\frac{1}{\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}a+\tfrac{1}{2}\right)\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}b\right)}\right).
15.4.30\mathop{F\/}\nolimits\!\left(a,1-a;b;\tfrac{1}{2}\right)=\frac{2^{{1-b}}\sqrt{\pi}\mathop{\Gamma\/}\nolimits\!\left(b\right)}{\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}a+\tfrac{1}{2}b\right)\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}b-\tfrac{1}{2}a+\tfrac{1}{2}\right)}.
15.4.31\mathop{F\/}\nolimits\!\left(a,\tfrac{1}{2}+a;\tfrac{3}{2}-2a;-\tfrac{1}{3}\right)=\left(\frac{8}{9}\right)^{{-2a}}\frac{\mathop{\Gamma\/}\nolimits\!\left(\tfrac{4}{3}\right)\mathop{\Gamma\/}\nolimits\!\left(\tfrac{3}{2}-2a\right)}{\mathop{\Gamma\/}\nolimits\!\left(\tfrac{3}{2}\right)\mathop{\Gamma\/}\nolimits\!\left(\tfrac{4}{3}-2a\right)}.
15.4.32\mathop{F\/}\nolimits\!\left(a,\tfrac{1}{2}+a;\tfrac{5}{6}+\tfrac{2}{3}a;\tfrac{1}{9}\right)=\sqrt{\pi}\left(\frac{3}{4}\right)^{a}\frac{\mathop{\Gamma\/}\nolimits\!\left(\tfrac{5}{6}+\tfrac{2}{3}a\right)}{\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}+\tfrac{1}{3}a\right)\mathop{\Gamma\/}\nolimits\!\left(\tfrac{5}{6}+\tfrac{1}{3}a\right)}.
15.4.33\mathop{F\/}\nolimits\!\left(3a,\tfrac{1}{3}+a;\tfrac{2}{3}+2a;e^{{\ifrac{i\pi}{3}}}\right)=\sqrt{\pi}e^{{\ifrac{i\pi a}{2}}}\left(\frac{16}{27}\right)^{{(3a+1)/6}}\frac{\mathop{\Gamma\/}\nolimits\!\left(\frac{5}{6}+a\right)}{\mathop{\Gamma\/}\nolimits\!\left(\frac{2}{3}+a\right)\mathop{\Gamma\/}\nolimits\!\left(\frac{2}{3}\right)}.