Digital Library of Mathematical Functions
About the Project
10 Bessel FunctionsKelvin Functions

§10.71 Integrals


§10.71(i) Indefinite Integrals

In the following equations fν,gν is any one of the four ordered pairs given in (10.63.1), and f^ν,g^ν is either the same ordered pair or any other ordered pair in (10.63.1).

10.71.1 x1+νfνx =-x1+ν2(fν+1-gν+1)
10.71.2 x1-νfνx =x1-ν2(fν-1-gν-1)
10.71.3 x(fνg^ν-gνf^ν)x =x22(f^ν(fν+1+gν+1)-g^ν(fν+1-gν+1)-fν(f^ν+1+g^ν+1)+gν(f^ν+1-g^ν+1))
10.71.4 x(fνg^ν+gνf^ν)x =14x2(2fνg^ν-fν-1g^ν+1-fν+1g^ν-1+2gνf^ν-gν-1f^ν+1-gν+1f^ν-1).
10.71.5 x(fν2+gν2)x=x(fνgν-fνgν)=-x2(fνfν+1+gνgν+1-fνgν+1+fν+1gν),
10.71.6 xfνgνx =14x2(2fνgν-fν-1gν+1-fν+1gν-1),
10.71.7 x(fν2-gν2)x =12x2(fν2-fν-1fν+1-gν2+gν-1gν+1).


10.71.8 xMν2(x)x =x(berνxbeiνx-berνxbeiνx),
xNν2(x)x =x(kerνxkeiνx-kerνxkeiνx),

where Mν(x) and Nν(x) are the modulus functions introduced in §10.68(i).

§10.71(ii) Definite Integrals

See Kerr (1978) and Glasser (1979).

§10.71(iii) Compendia

For infinite double integrals involving Kelvin functions see Prudnikov et al. (1986b, pp. 630–631).

For direct and inverse Laplace transforms of Kelvin functions see Prudnikov et al. (1992a, §3.19) and Prudnikov et al. (1992b, §3.19).