# Notations R

*ABCDEFGHIJKLMNOPQ♦R♦STUVWXYZ
$\Real$
real line; Common Notations and Definitions
$\realpart{}$
real part; 1.9.2
$r(n)$
Schröder number; 26.6.4
$\mathop{r_{k}\/}\nolimits\!\left(n\right)$
number of squares; §27.13(iv)
$\mathop{R^{(\alpha)}_{m,n}\/}\nolimits\!\left(z\right)$
disk polynomial; 18.37.1
$\mathop{\rho_{\mathrm{tp}}\/}\nolimits\!\left(\eta,\ell\right)$
outer turning point for Coulomb radial functions; 33.2.2
$\mathop{r_{\mathrm{tp}}\/}\nolimits\!\left(\epsilon,\ell\right)$
outer turning point for Coulomb functions; 33.14.3
$\mathop{R_{-a}\/}\nolimits\!\left(b_{1},\dots,b_{n};z_{1},\dots,z_{n}\right)$ or $\mathop{R_{-a}\/}\nolimits\!\left(\mathbf{b};\mathbf{z}\right)$
multivariate hypergeometric function; 19.16.9
$R_{mn}^{(j)}(\gamma,z)=\mathop{S^{m(j)}_{n}\/}\nolimits\!\left(z,\gamma\right)$
alternative notation for the radial spheroidal wave function; §30.1
$R(a;\mathbf{b};\mathbf{z})=\mathop{R_{-a}\/}\nolimits\!\left(\mathbf{b};% \mathbf{z}\right)$
alternative notation; §19.16(ii)
$\mathop{R_{n}\/}\nolimits\!\left(x;\gamma,\delta,N\right)$
dual Hahn polynomial; Table 18.25.1
$\mathop{R_{n}\/}\nolimits\!\left(x;\alpha,\beta,\gamma,\delta\right)$
Racah polynomial; Table 18.25.1
$\mathop{R_{n}\/}\nolimits\!\left(x;\alpha,\beta,\gamma,\delta\,|\,q\right)$
$q$-Racah polynomial; 18.28.19
$\mathop{R_{C}\/}\nolimits\!\left(x,y\right)$
Carlson’s combination of inverse circular and inverse hyperbolic functions; 19.2.17
$\mathop{R_{D}\/}\nolimits\!\left(x,y,z\right)$
elliptic integral symmetric in only two variables; 19.16.5
$\Residue$
residue; §1.10(iii)
$\mathop{R_{F}\/}\nolimits\!\left(x,y,z\right)$
symmetric elliptic integral of first kind; 19.16.1
$\mathop{R_{G}\/}\nolimits\!\left(x,y,z\right)$
symmetric elliptic integral of second kind; 19.16.3
$\mathop{R_{J}\/}\nolimits\!\left(x,y,z,p\right)$
symmetric elliptic integral of third kind; 19.16.2