Notations QNotations S
Notations R
*ABCDEFGHIJKLMNOPQ♦R♦STUVWXYZ
\Real
real line (excluding infinity); Common Notations and Definitions
\realpart{}
real part; (1.9.2)
r(n)
Schröder number; (26.6.4)
\mathop{r_{{k}}\/}\nolimits\!\left(n\right)
number of squares; §27.13(iv)
\mathop{R^{{(\alpha)}}_{{m,n}}\/}\nolimits\!\left(z\right)
disk polynomial; (18.37.1)
\mathop{\rho _{{\mathrm{tp}}}\/}\nolimits\!\left(\eta,\ell\right)
outer turning point for Coulomb radial functions; (33.2.2)
\mathop{r_{{\mathrm{tp}}}\/}\nolimits\!\left(\epsilon,\ell\right)
outer turning point for Coulomb functions; (33.14.3)
\mathop{R_{{-a}}\/}\nolimits\!\left(b_{1},b_{2},\dots,b_{n};z_{1},z_{2},\dots,z_{n}\right)
multivariate hypergeometric function; (19.16.9)
\mathop{R_{{-a}}\/}\nolimits\!\left(\mathbf{b};\mathbf{z}\right)
multivariate hypergeometric function; (19.16.9)
R_{{mn}}^{{(j)}}(\gamma,z)=\mathop{S^{{m(j)}}_{{n}}\/}\nolimits\!\left(z,\gamma\right)
alternative notation for the radial spheroidal wave function; §30.1
(with \mathop{S^{{m(j)}}_{{n}}\/}\nolimits\!\left(z,\gamma\right): radial spheroidal wave function)
R(a;\mathbf{b};\mathbf{z})=\mathop{R_{{-a}}\/}\nolimits\!\left(\mathbf{b};\mathbf{z}\right)
alternative notation; §19.16(ii)
(with \mathop{R_{{-a}}\/}\nolimits\!\left(\mathbf{b};\mathbf{z}\right): multivariate hypergeometric function)
\mathop{R_{{n}}\/}\nolimits\!\left(x;\gamma,\delta,N\right)
dual Hahn polynomial; Table 18.25.1
\mathop{R_{{n}}\/}\nolimits\!\left(x;\alpha,\beta,\gamma,\delta\right)
Racah polynomial; Table 18.25.1
\mathop{R_{{n}}\/}\nolimits\!\left(x;\alpha,\beta,\gamma,\delta\,|\, q\right)
q-Racah polynomial; (18.28.19)
\mathop{R_{C}\/}\nolimits\!\left(x,y\right)
Carlson’s combination of inverse circular and inverse hyperbolic functions; (19.2.17)
\mathop{R_{D}\/}\nolimits\!\left(x,y,z\right)
elliptic integral symmetric in only two variables; (19.16.5)
\Residue
residue; §1.10(iii)
\mathop{R_{F}\/}\nolimits\!\left(x,y,z\right)
symmetric elliptic integral of first kind; (19.16.1)
\mathop{R_{G}\/}\nolimits\!\left(x,y,z\right)
symmetric elliptic integral of second kind; (19.16.3)
\mathop{R_{J}\/}\nolimits\!\left(x,y,z,p\right)
symmetric elliptic integral of third kind; (19.16.2)