22.1 Special Notation22.3 Graphics

§22.2 Definitions

The nome q is given in terms of the modulus k by

22.2.1q=\mathop{\exp\/}\nolimits\!\left(-\pi\mathop{{K^{{\prime}}}\/}\nolimits\!\left(k\right)/\mathop{K\/}\nolimits\!\left(k\right)\right),

where \mathop{K\/}\nolimits\!\left(k\right), \mathop{{K^{{\prime}}}\/}\nolimits\!\left(k\right) are defined in §19.2(ii). Inversely,

22.2.2
k=\frac{{\mathop{\theta _{{2}}\/}\nolimits^{{2}}}\!\left(0,q\right)}{{\mathop{\theta _{{3}}\/}\nolimits^{{2}}}\!\left(0,q\right)},
k^{{\prime}}=\frac{{\mathop{\theta _{{4}}\/}\nolimits^{{2}}}\!\left(0,q\right)}{{\mathop{\theta _{{3}}\/}\nolimits^{{2}}}\!\left(0,q\right)},
\mathop{K\/}\nolimits\!\left(k\right)=\frac{\pi}{2}{\mathop{\theta _{{3}}\/}\nolimits^{{2}}}\!\left(0,q\right),

where k^{{\prime}}=\sqrt{1-k^{2}} and the theta functions are defined in §20.2(i).

With

22.2.3\zeta=\frac{\pi z}{2\!\mathop{K\/}\nolimits\!\left(k\right)},
22.2.4\mathop{\mathrm{sn}\/}\nolimits\left(z,k\right)=\frac{\mathop{\theta _{{3}}\/}\nolimits\!\left(0,q\right)}{\mathop{\theta _{{2}}\/}\nolimits\!\left(0,q\right)}\frac{\mathop{\theta _{{1}}\/}\nolimits\!\left(\zeta,q\right)}{\mathop{\theta _{{4}}\/}\nolimits\!\left(\zeta,q\right)}=\frac{1}{\mathop{\mathrm{ns}\/}\nolimits\left(z,k\right)},
22.2.5\mathop{\mathrm{cn}\/}\nolimits\left(z,k\right)=\frac{\mathop{\theta _{{4}}\/}\nolimits\!\left(0,q\right)}{\mathop{\theta _{{2}}\/}\nolimits\!\left(0,q\right)}\frac{\mathop{\theta _{{2}}\/}\nolimits\!\left(\zeta,q\right)}{\mathop{\theta _{{4}}\/}\nolimits\!\left(\zeta,q\right)}=\frac{1}{\mathop{\mathrm{nc}\/}\nolimits\left(z,k\right)},
22.2.6\mathop{\mathrm{dn}\/}\nolimits\left(z,k\right)=\frac{\mathop{\theta _{{4}}\/}\nolimits\!\left(0,q\right)}{\mathop{\theta _{{3}}\/}\nolimits\!\left(0,q\right)}\frac{\mathop{\theta _{{3}}\/}\nolimits\!\left(\zeta,q\right)}{\mathop{\theta _{{4}}\/}\nolimits\!\left(\zeta,q\right)}=\frac{1}{\mathop{\mathrm{nd}\/}\nolimits\left(z,k\right)},
22.2.7\mathop{\mathrm{sd}\/}\nolimits\left(z,k\right)=\frac{{\mathop{\theta _{{3}}\/}\nolimits^{{2}}}\!\left(0,q\right)}{\mathop{\theta _{{2}}\/}\nolimits\!\left(0,q\right)\mathop{\theta _{{4}}\/}\nolimits\!\left(0,q\right)}\frac{\mathop{\theta _{{1}}\/}\nolimits\!\left(\zeta,q\right)}{\mathop{\theta _{{3}}\/}\nolimits\!\left(\zeta,q\right)}=\frac{1}{\mathop{\mathrm{ds}\/}\nolimits\left(z,k\right)},
22.2.8\mathop{\mathrm{cd}\/}\nolimits\left(z,k\right)=\frac{\mathop{\theta _{{3}}\/}\nolimits\!\left(0,q\right)}{\mathop{\theta _{{2}}\/}\nolimits\!\left(0,q\right)}\frac{\mathop{\theta _{{2}}\/}\nolimits\!\left(\zeta,q\right)}{\mathop{\theta _{{3}}\/}\nolimits\!\left(\zeta,q\right)}=\frac{1}{\mathop{\mathrm{dc}\/}\nolimits\left(z,k\right)},
22.2.9\mathop{\mathrm{sc}\/}\nolimits\left(z,k\right)=\frac{\mathop{\theta _{{3}}\/}\nolimits\!\left(0,q\right)}{\mathop{\theta _{{4}}\/}\nolimits\!\left(0,q\right)}\frac{\mathop{\theta _{{1}}\/}\nolimits\!\left(\zeta,q\right)}{\mathop{\theta _{{2}}\/}\nolimits\!\left(\zeta,q\right)}=\frac{1}{\mathop{\mathrm{cs}\/}\nolimits\left(z,k\right)}.

As a function of z, with fixed k, each of the 12 Jacobian elliptic functions is doubly periodic, having two periods whose ratio is not real. Each is meromorphic in z for fixed k, with simple poles and simple zeros, and each is meromorphic in k for fixed z. For k\in[0,1], all functions are real for z\in\Real.

Glaisher’s Notation

The Jacobian functions are related in the following way. Let \mathrm{p}, \mathrm{q}, \mathrm{r} be any three of the letters \mathrm{s}, \mathrm{c}, \mathrm{d}, \mathrm{n}. Then

22.2.10\mathop{\mathrm{pq}\/}\nolimits\left(z,k\right)=\frac{\mathop{\mathrm{pr}\/}\nolimits\left(z,k\right)}{\mathop{\mathrm{qr}\/}\nolimits\left(z,k\right)}=\frac{1}{\mathop{\mathrm{qp}\/}\nolimits\left(z,k\right)},

with the convention that functions with the same two letters are replaced by unity; e.g. \mathop{\mathrm{ss}\/}\nolimits\left(z,k\right)=1.

The six functions containing the letter \mathrm{s} in their two-letter name are odd in z; the other six are even in z.

In terms of Neville’s theta functions (§20.1)

22.2.11\mathop{\mathrm{pq}\/}\nolimits\left(z,k\right)=\ifrac{\mathop{\theta _{{p}}\/}\nolimits\!\left(z\middle|\tau\right)}{\mathop{\theta _{{q}}\/}\nolimits\!\left(z\middle|\tau\right)},

where

22.2.12\tau=\ifrac{i\mathop{{K^{{\prime}}}\/}\nolimits\!\left(k\right)}{\mathop{K\/}\nolimits\!\left(k\right)},

and \mathrm{p}, \mathrm{q} are any pair of the letters \mathrm{s}, \mathrm{c}, \mathrm{d}, \mathrm{n}.