Notations FNotations H
Notations G
*ABCDEF♦G♦HIJKLMNOPQRSTUVWXYZ
G_{n}
Genocchi numbers; §24.15(i)
\mathop{G\/}\nolimits\!\left(z\right)
Barnes’ G-function (or double gamma function); (5.17.1)
\mathop{G\/}\nolimits\!\left(z\right)
Goodwin–Staton integral; (7.2.12)
\mathop{G\/}\nolimits\!\left(k\right)
Waring’s function; §27.13(iii)
\mathop{\mathrm{g}\/}\nolimits\!\left(z\right)
auxiliary function for sine and cosine integrals; (6.2.18)
\mathop{\mathrm{g}\/}\nolimits\!\left(z\right)
auxiliary function for Fresnel integrals; (7.2.11)
\mathop{g\/}\nolimits\!\left(k\right)
Waring’s function; §27.13(iii)
G_{s}(x)
Bose–Einstein integral; (25.12.15)
\mathop{G_{{p}}\/}\nolimits\!\left(z\right)
product of gamma and incomplete gamma functions; §10.17(v)
\mathop{G_{{p}}\/}\nolimits\!\left(z\right)
product of gamma and incomplete gamma functions; §9.7(v)
g_{{\mathit{e},m}}(h)
joining factor for radial Mathieu functions; §28.22(i)
g_{{\mathit{o},m}}(h)
joining factor for radial Mathieu functions; §28.22(i)
\mathop{G\/}\nolimits\!\left(n,\mathop{\chi\/}\nolimits\right)
Gauss sum; (27.10.9)
\mathop{G_{{\ell}}\/}\nolimits\!\left(\eta,\rho\right)
irregular Coulomb radial function; (33.2.11)
g(\epsilon,\ell;r)=\mathop{c\/}\nolimits\!\left(\epsilon,\ell;r\right)
notation used by Greene et al. (1979); §33.1
(with \mathop{c\/}\nolimits\!\left(\epsilon,\ell;r\right): irregular Coulomb function)
\mathop{G_{{n}}\/}\nolimits\!\left(p,q,x\right)
shifted Jacobi polynomial; (18.1.2)
\mathop{{G^{{m,n}}_{{p,q}}}\/}\nolimits\!\left(z;{a_{1},\dots,a_{p}\atop b_{1},\dots,b_{q}}\right)
Meijer G-function; (16.17.1)
\mathop{{G^{{m,n}}_{{p,q}}}\/}\nolimits\!\left(z;\mathbf{a};\mathbf{b}\right)
Meijer G-function; (16.17.1)
\EulerConstant
Euler’s constant; (5.2.3)
\mathop{\Gamma\/}\nolimits\!\left(z\right)
gamma function; (5.2.1)
\mathop{\Gamma _{{m}}\/}\nolimits\!\left(a\right)
multivariate gamma function; §35.3(i)
\mathop{\Gamma _{{q}}\/}\nolimits\!\left(z\right)
q-gamma function; (5.18.4)
\mathop{\Gamma\/}\nolimits\!\left(a,z\right)
incomplete gamma function; (8.2.2)
\mathop{\gamma\/}\nolimits\!\left(a,z\right)
incomplete gamma function; (8.2.1)
\mathop{\gamma^{{*}}\/}\nolimits\!\left(a,z\right)
incomplete gamma function; (8.2.6)
\mathop{\mathrm{Gc}_{{m}}\/}\nolimits\!\left(z,h\right)
Mathieu function; §28.26(i)
\mathop{\mathrm{gd}\/}\nolimits x
Gudermannian function; (4.23.39)
\mathop{{\mathrm{gd}^{{-1}}}\/}\nolimits\!\left(x\right)
inverse Gudermannian function; (4.23.41)
\mathop{\mathrm{Ge}_{{n}}\/}\nolimits\!\left(z,q\right)
modified Mathieu function; (28.20.7)
\mathop{\mathrm{ge}_{{n}}\/}\nolimits\!\left(z,q\right)
second solution, Mathieu’s equation; (28.5.2)
\mathrm{Gey}_{n}(z,q)=\sqrt{\tfrac{1}{2}\pi}g_{{\mathit{o},n}}(h){\mathop{\mathrm{se}_{{n}}\/}\nolimits^{{\prime}}}\!\left(0,q\right)\mathop{{\mathrm{Ms}^{{(2)}}_{{n}}}\/}\nolimits\!\left(z,h\right)
notation used by Arscott (1964b), McLachlan (1947); §28.1
(with \mathop{\mathrm{se}_{{n}}\/}\nolimits\!\left(z,q\right): Mathieu function and \mathop{{\mathrm{Ms}^{{(j)}}_{{n}}}\/}\nolimits\!\left(z,h\right): radial Mathieu function)
\mathop{\mathrm{Gi}\/}\nolimits\!\left(z\right)
Scorer function (inhomogeneous Airy function); §9.12(i)
\gradient
gradient of differentiable scalar function; (1.6.20)
\mathop{\mathrm{Gs}_{{m}}\/}\nolimits\!\left(z,h\right)
Mathieu function; §28.26(i)