Digital Library of Mathematical Functions
About the Project
NIST
Notations

Notations G

*ABCDEF♦G♦HIJKLMNOPQRSTUVWXYZ
Gn
Genocchi numbers; 24.15(i)
G(z)
Barnes’ G-function (or double gamma function); (5.17.1)
G(z)
Goodwin–Staton integral; (7.2.12)
G(k)
Waring’s function; 27.13(iii)
g(z)
auxiliary function for sine and cosine integrals; (6.2.18)
g(z)
auxiliary function for Fresnel integrals; (7.2.11)
g(k)
Waring’s function; 27.13(iii)
Gs(x)
Bose–Einstein integral; (25.12.15)
Gp(z)
product of gamma and incomplete gamma functions; 10.17(v)
Gp(z)
product of gamma and incomplete gamma functions; 9.7(v)
ge,m(h)
joining factor for radial Mathieu functions; 28.22(i)
go,m(h)
joining factor for radial Mathieu functions; 28.22(i)
G(n,χ)
Gauss sum; (27.10.9)
G(η,ρ)
irregular Coulomb radial function; (33.2.11)
g(ϵ,;r)=c(ϵ,;r)
notation used by Greene et al. (1979); Greene et al. (1979):
(with c(ϵ,;r): irregular Coulomb function)
Gn(p,q,x)
shifted Jacobi polynomial; (18.1.2)
Gp,qm,n(z;a1,,apb1,,bq)
Meijer G-function; (16.17.1)
Gp,qm,n(z;a;b)
Meijer G-function; (16.17.1)
γ
Euler’s constant; (5.2.3)
Γ(z)
gamma function; (5.2.1)
Γm(a)
multivariate gamma function; 35.3(i)
Γq(z)
q-gamma function; (5.18.4)
Γ(a,z)
incomplete gamma function; (8.2.2)
γ(a,z)
incomplete gamma function; (8.2.1)
γ*(a,z)
incomplete gamma function; (8.2.6)
Gcm(z,h)
Mathieu function; 28.26(i)
gdx
Gudermannian function; (4.23.39)
gd-1(x)
inverse Gudermannian function; (4.23.41)
Gen(z,q)
modified Mathieu function; (28.20.7)
gen(z,q)
second solution, Mathieu’s equation; (28.5.2)
Geyn(z,q)=12πgo,n(h)sen(0,q)Msn(2)(z,h)
notation used by Arscott (1964b), McLachlan (1947); 28.1
(with sen(z,q): Mathieu function and Msn(j)(z,h): radial Mathieu function)
Gi(z)
Scorer function (inhomogeneous Airy function); 9.12(i)
grad
gradient of differentiable scalar function; (1.6.20)
Gsm(z,h)
Mathieu function; 28.26(i)