What's New
About the Project
NIST
Notations

Notations G

*ABCDEF♦G♦HIJKLMNOPQRSTUVWXYZ
G n
Genocchi numbers; §24.15(i)
G ( z )
Barnes’ G-function (or double gamma function); 5.17.1
G ( z )
Goodwin–Staton integral; 7.2.12
G ( k )
Waring’s function; §27.13(iii)
g ( z )
auxiliary function for sine and cosine integrals; 6.2.18
g ( z )
auxiliary function for Fresnel integrals; 7.2.11
g ( k )
Waring’s function; §27.13(iii)
G s ( x )
Bose–Einstein integral; 25.12.15
G p ( z )
rescaled terminant function; 9.7.22
g e , m ( h )
joining factor for radial Mathieu functions; §28.22(i)
g o , m ( h )
joining factor for radial Mathieu functions; §28.22(i)
G ( n , χ )
Gauss sum; 27.10.9
G ( η , ρ )
irregular Coulomb radial function; 33.2.11
g ( ϵ , ; r ) = c ( ϵ , ; r )
notation used by Greene et al. (1979); Greene et al. (1979):
(with c(ϵ,;r): irregular Coulomb function)
G n ( p , q , x )
shifted Jacobi polynomial; 18.1.2
Gp,qm,n(z;a1,,apb1,,bq) or Gp,qm,n(z;a;b)
Meijer G-function; 16.17.1
γ
Euler’s constant; 5.2.3
Γ ( z )
gamma function; 5.2.1
Γ m ( a )
multivariate gamma function; §35.3(i)
Γ q ( z )
q-gamma function; 5.18.4
Γ ( a , z )
incomplete gamma function; 8.2.2
γ ( a , z )
incomplete gamma function; 8.2.1
γ * ( a , z )
incomplete gamma function; 8.2.6
Gc m ( z , h )
Mathieu function; §28.26(i)
gd x
Gudermannian function; 4.23.39
gd - 1 ( x )
inverse Gudermannian function; 4.23.41
Ge n ( z , q )
modified Mathieu function; 28.20.7
ge n ( z , q )
second solution, Mathieu’s equation; 28.5.2
Gey n ( z , q ) = 1 2 π g o , n ( h ) se n ( 0 , q ) Ms n ( 2 ) ( z , h )
notation used by Arscott (1964b), McLachlan (1947); §28.1
(with sen(z,q): Mathieu function and Msn(j)(z,h): radial Mathieu function)
Gi ( z )
Scorer function (inhomogeneous Airy function); §9.12(i)
grad
gradient of differentiable scalar function; 1.6.20
Gs m ( z , h )
Mathieu function; §28.26(i)