Notations XNotations Z
Notations Y
*ABCDEFGHIJKLMNOPQRSTUVWX♦Y♦Z
\mathop{y_{{\nu,m}}\/}\nolimits
zeros of the Bessel function \mathop{Y_{{\nu}}\/}\nolimits\!\left(x\right); §10.21(i)
\mathop{{y^{{\prime}}_{{\nu,m}}}\/}\nolimits
zeros of the Bessel function derivative {\mathop{Y_{{\nu}}\/}\nolimits^{{\prime}}}\!\left(x\right); §10.21(i)
\mathop{Y_{{\nu}}\/}\nolimits\!\left(z\right)
Bessel function of the second kind; (10.2.3)
y_{n}(x)=\mathop{y_{{n}}\/}\nolimits\!\left(x;2\right)
other notation; (18.34.2)
(with \mathop{y_{{n}}\/}\nolimits\!\left(x;a\right): Bessel polynomial)
\mathop{\widetilde{Y}_{{\nu}}\/}\nolimits\!\left(x\right)
Bessel function of imaginary order; (10.24.2)
y_{n}(z)=\mathop{\mathsf{y}_{{n}}\/}\nolimits\!\left(z\right)
notation used by Abramowitz and Stegun (1964); §10.1
(with \mathop{\mathsf{y}_{{n}}\/}\nolimits\!\left(z\right): spherical Bessel function of the second kind)
\mathop{\mathsf{y}_{{n}}\/}\nolimits\!\left(z\right)
spherical Bessel function of the second kind; (10.47.4)
\mathop{y_{{n}}\/}\nolimits\!\left(x;a\right)
Bessel polynomial; (18.34.1)
\mathop{Y_{{{l},{m}}}\/}\nolimits\!\left(\theta,\phi\right)
spherical harmonic; (14.30.1)
\mathop{Y_{{l}}^{{m}}\/}\nolimits\!\left(\theta,\phi\right)
surface harmonic of the first kind; (14.30.2)
y_{n}(x;a,b)=\mathop{y_{{n}}\/}\nolimits\!\left(2x/b;a\right)
other notation; (18.34.3)
(with \mathop{y_{{n}}\/}\nolimits\!\left(x;a\right): Bessel polynomial)