What's New
About the Project
NIST
Notations

Notations H

*ABCDEFG♦H♦IJKLMNOPQRSTUVWXYZ
H ( s )
Euler sums; §25.16(ii)
H ( x )
Heaviside function; 1.16.13
H n ( x )
Hermite polynomial; Table 18.3.1
H ν ( z )
Struve function; 11.2.1
He n ( x )
Hermite polynomial; Table 18.3.1
H ν ( 1 ) ( z )
Bessel function of the third kind (or Hankel function); 10.2.5
H ν ( 2 ) ( z )
Bessel function of the third kind (or Hankel function); 10.2.6
h n ( 1 ) ( z ) = h n ( 1 ) ( z )
notation used by Abramowitz and Stegun (1964); §10.1
(with hn(1)(z): spherical Bessel function of the third kind)
h n ( 1 ) ( z )
spherical Bessel function of the third kind; 10.47.5
h n ( 2 ) ( z ) = h n ( 2 ) ( z )
notation used by Abramowitz and Stegun (1964); §10.1
(with hn(2)(z): spherical Bessel function of the third kind)
h n ( 2 ) ( z )
spherical Bessel function of the third kind; 10.47.6
H ( s , z )
generalized Euler sums; §25.16(ii)
( f ; x )
Hilbert transform; §1.14(v)
H ( z | τ ) = θ 1 ( u | τ )
Jacobi’s notation; §20.1
(with θj(z|τ): theta function)
H ( a , u )
line-broadening function; 7.19.4
H n ( x | q )
continuous q-Hermite polynomial; 18.28.16
h n ( x | q )
continuous q-1-Hermite polynomial; 18.28.18
H 1 ( z | τ ) = θ 2 ( u | τ )
Jacobi’s notation; §20.1
(with θj(z|τ): theta function)
h n ( x ; q )
discrete q-Hermite I polynomial; 18.27.21
h ~ n ( x ; q )
discrete q-Hermite II polynomial; 18.27.23
H ± ( η , ρ )
irregular Coulomb radial functions; 33.2.7
h ( ϵ , ; r )
irregular Coulomb function; 33.14.7
H q p ( a 1 , , a p b 1 , , b q ; z )
bilateral hypergeometric function; 16.4.16
hc p m ( z , ξ )
paraboloidal wave function; §28.31(iii)
( s 1 , s 2 ) Hf m ( a , q m ; α , β , γ , δ ; z )
Heun functions; §31.4
( s 1 , s 2 ) Hf m ν ( a , q m ; α , β , γ , δ ; z )
path-multiplicative solutions of Heun’s equation; §31.6
Hh n ( z )
probability function; 7.18.12
Hi ( z )
Scorer function (inhomogeneous Airy function); §9.12(i)
Hi ν ( z ) = H ν ( 2 ) ( z )
notation used by Jeffreys and Jeffreys (1956); §10.1
(with Hν(2)(z): Bessel function of the third kind (or Hankel function))
H ( a , q ; α , β , γ , δ ; z )
Heun functions; 31.3.1
Hp n , m ( a , q n , m ; - n , β , γ , δ ; z )
Heun polynomials; 31.5.2
Hs ν ( z ) = H ν ( 1 ) ( z )
notation used by Jeffreys and Jeffreys (1956); §10.1
(with Hν(1)(z): Bessel function of the third kind (or Hankel function))
hs p m ( z , ξ )
paraboloidal wave function; §28.31(iii)