Notations GNotations I
Notations H
*ABCDEFG♦H♦IJKLMNOPQRSTUVWXYZ
\mathop{H\/}\nolimits\!\left(s\right)
Euler sums; §25.16(ii)
\mathop{H\/}\nolimits\!\left(x\right)
Heaviside function; (1.16.13)
\mathop{H_{{n}}\/}\nolimits\!\left(x\right)
Hermite polynomial; Table 18.3.1
\mathop{\mathbf{H}_{{\nu}}\/}\nolimits\!\left(z\right)
Struve function; (11.2.1)
\mathop{\mathit{He}_{{n}}\/}\nolimits\!\left(x\right)
Hermite polynomial; Table 18.3.1
\mathop{{H^{{(1)}}_{{\nu}}}\/}\nolimits\!\left(z\right)
Bessel function of the third kind (or Hankel function); (10.2.5)
\mathop{{H^{{(2)}}_{{\nu}}}\/}\nolimits\!\left(z\right)
Bessel function of the third kind (or Hankel function); (10.2.6)
h_{n}^{{(1)}}(z)=\mathop{{\mathsf{h}^{{(1)}}_{{n}}}\/}\nolimits\!\left(z\right)
notation used by Abramowitz and Stegun (1964); §10.1
(with \mathop{{\mathsf{h}^{{(1)}}_{{n}}}\/}\nolimits\!\left(z\right): spherical Bessel function of the third kind)
\mathop{{\mathsf{h}^{{(1)}}_{{n}}}\/}\nolimits\!\left(z\right)
spherical Bessel function of the third kind; (10.47.5)
h_{n}^{{(2)}}(z)=\mathop{{\mathsf{h}^{{(2)}}_{{n}}}\/}\nolimits\!\left(z\right)
notation used by Abramowitz and Stegun (1964); §10.1
(with \mathop{{\mathsf{h}^{{(2)}}_{{n}}}\/}\nolimits\!\left(z\right): spherical Bessel function of the third kind)
\mathop{{\mathsf{h}^{{(2)}}_{{n}}}\/}\nolimits\!\left(z\right)
spherical Bessel function of the third kind; (10.47.6)
\mathop{H\/}\nolimits\!\left(s,z\right)
generalized Euler sums; §25.16(ii)
\mathop{\mathcal{H}\/}\nolimits\left(f;x\right)
Hilbert transform; §1.14(v)
\mathrm{H}(z|\tau)=\mathop{\theta _{{1}}\/}\nolimits\!\left(u\middle|\tau\right)
Jacobi’s notation; §20.1
(with \mathop{\theta _{{j}}\/}\nolimits\!\left(z\middle|\tau\right): theta function)
\mathop{H\/}\nolimits\!\left(a,u\right)
line-broadening function; (7.19.4)
\mathop{H_{{n}}\/}\nolimits\!\left(x\,|\, q\right)
continuous q-Hermite polynomial; (18.28.16)
\mathop{h_{{n}}\/}\nolimits\!\left(x\,|\, q\right)
continuous q^{{-1}}-Hermite polynomial; (18.28.18)
\mathrm{H}_{1}(z|\tau)=\mathop{\theta _{{2}}\/}\nolimits\!\left(u\middle|\tau\right)
Jacobi’s notation; §20.1
(with \mathop{\theta _{{j}}\/}\nolimits\!\left(z\middle|\tau\right): theta function)
\mathop{h_{{n}}\/}\nolimits\!\left(x;q\right)
discrete q-Hermite I polynomial; (18.27.21)
\mathop{\tilde{h}_{{n}}\/}\nolimits\!\left(x;q\right)
discrete q-Hermite II polynomial; (18.27.23)
\mathop{{H^{{\pm}}_{{\ell}}}\/}\nolimits\!\left(\eta,\rho\right)
irregular Coulomb radial functions; (33.2.7)
\mathop{h\/}\nolimits\!\left(\epsilon,\ell;r\right)
irregular Coulomb function; (33.14.7)
\mathop{{{}_{{p}}H_{{q}}}\/}\nolimits\!\left({a_{1},\dots,a_{p}\atop b_{1},\dots,b_{q}};z\right)
bilateral hypergeometric function; (16.4.16)
\mathit{hc}_{p}^{m}(z,\xi)
paraboloidal wave function; §28.31(iii)
\mathop{(s_{1},s_{2})\mathit{Hf}_{{m}}\/}\nolimits\!\left(a,q_{m};\alpha,\beta,\gamma,\delta;z\right)
Heun functions; §31.4
\mathop{(s_{1},s_{2})\mathit{Hf}_{{m}}^{{\nu}}\/}\nolimits\!\left(a,q_{m};\alpha,\beta,\gamma,\delta;z\right)
path-multiplicative solutions of Heun’s equation; §31.6
\mathop{\mathit{Hh}_{{n}}\/}\nolimits\!\left(z\right)
probability function; (7.18.12)
\mathop{\mathit{Hh}_{{n}}\/}\nolimits\!\left(z\right)
probability function; §12.7(ii)
\mathop{\mathrm{Hi}\/}\nolimits\!\left(z\right)
Scorer function (inhomogeneous Airy function); §9.12(i)
\mathrm{Hi}_{\nu}(z)=\mathop{{H^{{(2)}}_{{\nu}}}\/}\nolimits\!\left(z\right)
notation used by Jeffreys and Jeffreys (1956); §10.1
(with \mathop{{H^{{(2)}}_{{\nu}}}\/}\nolimits\!\left(z\right): Bessel function of the third kind (or Hankel function))
\mathop{\mathit{H\!\ell}\/}\nolimits\!\left(a,q;\alpha,\beta,\gamma,\delta;z\right)
Heun functions; (31.3.1)
\mathop{\mathit{Hp}_{{n,m}}\/}\nolimits\!\left(a,q_{{n,m}};-n,\beta,\gamma,\delta;z\right)
Heun polynomials; (31.5.2)
\mathrm{Hs}_{\nu}(z)=\mathop{{H^{{(1)}}_{{\nu}}}\/}\nolimits\!\left(z\right)
notation used by Jeffreys and Jeffreys (1956); §10.1
(with \mathop{{H^{{(1)}}_{{\nu}}}\/}\nolimits\!\left(z\right): Bessel function of the third kind (or Hankel function))
\mathit{hs}_{p}^{m}(z,\xi)
paraboloidal wave function; §28.31(iii)