What's New
About the Project
NIST
Notations

Notations L

*ABCDEFGHIJK♦L♦MNOPQRSTUVWXYZ
𝕃
lattice in ; §23.2(i)
L n
Lebesgue constant; 1.8.8
L n ( x ) = L n ( 0 ) ( x )
Laguerre polynomial; §18.1(ii)
(with Ln(α)(x): Laguerre (or generalized Laguerre) polynomial)
L ν ( z )
modified Struve function; 11.2.2
L n ( α ) ( x )
Laguerre (or generalized Laguerre) polynomial; Table 18.3.1
L ( s , χ )
Dirichlet L-function; 25.15.1
( f ; s )
Laplace transform; 1.14.17
L c ν ( 2 m ) ( ψ , k 2 ) = ( - 1 ) m Ec ν 2 m ( z , k 2 )
notation used by Jansen (1977); §29.1
(with Ecνm(z,k2): Lamé function)
L s ν ( 2 m + 1 ) ( ψ , k 2 ) = ( - 1 ) m Ec ν 2 m + 1 ( z , k 2 )
notation used by Jansen (1977); §29.1
(with Ecνm(z,k2): Lamé function)
L c ν ( 2 m + 1 ) ( ψ , k 2 ) = ( - 1 ) m Es ν 2 m + 1 ( z , k 2 )
notation used by Jansen (1977); §29.1
(with Esνm(z,k2): Lamé function)
L s ν ( 2 m + 2 ) ( ψ , k 2 ) = ( - 1 ) m Es ν 2 m + 2 ( z , k 2 )
notation used by Jansen (1977); §29.1
(with Esνm(z,k2): Lamé function)
L n ( α ) ( x ; q )
q-Laguerre polynomial; 18.27.15
λ ( τ )
elliptic modular function; 23.15.6
Λ ( n )
Mangoldt’s function; 27.2.14
λ ( n )
Liouville’s function; 27.2.13
λ m n ( γ ) = λ n m ( γ 2 ) + γ 2
alternative notation for eigenvalues of the spheroidal differential equation; §30.1
(with λnm(γ2): eigenvalues of the spheroidal differential equation)
λ ν + 2 n ( q )
eigenvalues of Mathieu equation; §28.12(i)
λ n m ( γ 2 )
eigenvalues of the spheroidal differential equation; §30.3(i)
li ( x )
logarithmic integral; 6.2.8
Li 2 ( z )
dilogarithm; 25.12.1
Li s ( z )
polylogarithm; 25.12.10
lim inf
least limit point; Common Notations and Definitions
Ln z
general logarithm function; 4.2.1
ln z
principal branch of logarithm function; 4.2.2
log x
logarithm to base e (Chapter 27 only); §4.2(ii)
log 10 z
common logarithm; §4.2(ii)
log a z
logarithm to general base a; §4.2(ii)