Digital Library of Mathematical Functions
About the Project
NIST
Notations

Notations L

*ABCDEFGHIJK♦L♦MNOPQRSTUVWXYZ
𝕃
lattice in ; 23.2(i)
Ln
Lebesgue constant; (1.8.8)
Ln(x)
Laguerre polynomial; 18.1(ii)
Ln(x)
Laguerre polynomial; 18.3.1
Lν(z)
modified Struve function; (11.2.2)
Ln(α)(x)
Laguerre (or generalized Laguerre) polynomial; 18.3.1
L(s,χ)
Dirichlet L-function; (25.15.1)
(f;s)
Laplace transform; (1.14.17)
Lcν(2m)(ψ,k2)=(-1)mEcν2m(z,k2)
notation used by Jansen (1977); 29.1
(with Ecνm(z,k2): Lamé function)
Lsν(2m+1)(ψ,k2)=(-1)mEcν2m+1(z,k2)
notation used by Jansen (1977); 29.1
(with Ecνm(z,k2): Lamé function)
Lcν(2m+1)(ψ,k2)=(-1)mEsν2m+1(z,k2)
notation used by Jansen (1977); 29.1
(with Esνm(z,k2): Lamé function)
Lsν(2m+2)(ψ,k2)=(-1)mEsν2m+2(z,k2)
notation used by Jansen (1977); 29.1
(with Esνm(z,k2): Lamé function)
Ln(α)(x;q)
q-Laguerre polynomial; (18.27.15)
λ(τ)
elliptic modular function; (23.15.6)
Λ(n)
Mangoldt’s function; (27.2.14)
λ(n)
Liouville’s function; (27.2.13)
λmn(γ)=λnm(γ2)+γ2
alternative notation for eigenvalues of the spheroidal differential equation; 30.1
(with λnm(γ2): eigenvalues of the spheroidal differential equation)
λν+2n(q)
eigenvalues of Mathieu equation; 28.12(i)
λnm(γ2)
eigenvalues of the spheroidal differential equation; 30.3(i)
li(x)
logarithmic integral; (6.2.8)
Li2(z)
dilogarithm; (25.12.1)
Lis(z)
polylogarithm; (25.12.10)
lim inf
least limit point; Common Notations and Definitions
Lnz
general logarithm function; (4.2.1)
lnz
principal branch of logarithm function; (4.2.2)
logx
logarithm to base (Chapter 27 only); 4.2(ii)
log10z
common logarithm; 4.2(ii)
logaz
logarithm to general base a; 4.2(ii)