Notations KNotations M
Notations L
*ABCDEFGHIJK♦L♦MNOPQRSTUVWXYZ
\mathbb{L}
lattice in \Complex; §23.2(i)
L_{n}
Lebesgue constant; (1.8.8)
\mathop{L_{{n}}\/}\nolimits\!\left(x\right)
Laguerre polynomial; §18.1(ii)
\mathop{L_{{n}}\/}\nolimits\!\left(x\right)
Laguerre polynomial; Table 18.3.1
\mathop{\mathbf{L}_{{\nu}}\/}\nolimits\!\left(z\right)
modified Struve function; (11.2.2)
\mathop{L^{{(\alpha)}}_{{n}}\/}\nolimits\!\left(x\right)
Laguerre (or generalized Laguerre) polynomial; Table 18.3.1
\mathop{L\/}\nolimits\!\left(s,\chi\right)
Dirichlet \mathop{L\/}\nolimits-function; (25.15.1)
\mathop{\mathscr{L}\/}\nolimits\left(f;s\right)
Laplace transform; (1.14.17)
L_{{c\nu}}^{{(2m)}}(\psi,{k^{{\prime}}}^{2})=(-1)^{m}\mathop{\mathit{Ec}^{{2m}}_{{\nu}}\/}\nolimits\!\left(z,k^{2}\right)
notation used by Jansen (1977); §29.1
(with \mathop{\mathit{Ec}^{{m}}_{{\nu}}\/}\nolimits\!\left(z,k^{2}\right): Lamé function)
L_{{s\nu}}^{{(2m+1)}}(\psi,{k^{{\prime}}}^{2})=(-1)^{m}\mathop{\mathit{Ec}^{{2m+1}}_{{\nu}}\/}\nolimits\!\left(z,k^{2}\right)
notation used by Jansen (1977); §29.1
(with \mathop{\mathit{Ec}^{{m}}_{{\nu}}\/}\nolimits\!\left(z,k^{2}\right): Lamé function)
L_{{c\nu}}^{{(2m+1)}}(\psi,{k^{{\prime}}}^{2})=(-1)^{m}\mathop{\mathit{Es}^{{2m+1}}_{{\nu}}\/}\nolimits\!\left(z,k^{2}\right)
notation used by Jansen (1977); §29.1
(with \mathop{\mathit{Es}^{{m}}_{{\nu}}\/}\nolimits\!\left(z,k^{2}\right): Lamé function)
L_{{s\nu}}^{{(2m+2)}}(\psi,{k^{{\prime}}}^{2})=(-1)^{m}\mathop{\mathit{Es}^{{2m+2}}_{{\nu}}\/}\nolimits\!\left(z,k^{2}\right)
notation used by Jansen (1977); §29.1
(with \mathop{\mathit{Es}^{{m}}_{{\nu}}\/}\nolimits\!\left(z,k^{2}\right): Lamé function)
\mathop{L^{{(\alpha)}}_{{n}}\/}\nolimits\!\left(x;q\right)
q-Laguerre polynomial; (18.27.15)
\mathop{\lambda\/}\nolimits\!\left(\tau\right)
elliptic modular function; (23.15.6)
\mathop{\Lambda\/}\nolimits\!\left(n\right)
Mangoldt’s function; (27.2.14)
\mathop{\lambda\/}\nolimits\!\left(n\right)
Liouville’s function; (27.2.13)
\lambda _{{mn}}(\gamma)=\mathop{\lambda^{{m}}_{{n}}\/}\nolimits\!\left(\gamma^{2}\right)+\gamma^{2}
alternative notation for eigenvalues of the spheroidal differential equation; §30.1
(with \mathop{\lambda^{{m}}_{{n}}\/}\nolimits\!\left(\gamma^{2}\right): eigenvalues of the spheroidal differential equation)
\mathop{\lambda _{{\nu+2n}}\/}\nolimits\!\left(q\right)
eigenvalues of Mathieu equation; §28.12(i)
\mathop{\lambda^{{m}}_{{n}}\/}\nolimits\!\left(\gamma^{2}\right)
eigenvalues of the spheroidal differential equation; §30.3(i)
\mathop{\mathrm{li}\/}\nolimits\!\left(x\right)
logarithmic integral; (6.2.8)
\mathop{\mathrm{Li}_{2}\/}\nolimits\!\left(z\right)
dilogarithm; (25.12.1)
\mathop{\mathrm{Li}_{{s}}\/}\nolimits\!\left(z\right)
polylogarithm; (25.12.10)
\liminf
least limit point; Common Notations and Definitions
\mathop{\mathrm{Ln}\/}\nolimits z
general logarithm function; (4.2.1)
\mathop{\ln\/}\nolimits z
principal branch of logarithm function; (4.2.2)
\mathop{\mathrm{log}\/}\nolimits x
logarithm to base e (Chapter 27 only); §4.2(ii)
\mathop{\mathrm{log}_{{10}}\/}\nolimits z
common logarithm; §4.2(ii)
\mathop{\mathrm{log}_{{a}}\/}\nolimits z
logarithm to general base a; §4.2(ii)