Notations DNotations F
Notations E
*ABCD♦E♦FGHIJKLMNOPQRSTUVWXYZ
\in
element of; Common Notations and Definitions
\notin
not an element of; Common Notations and Definitions
e
base of exponential function; (4.2.11)
\mathop{E_{{n}}\/}\nolimits
Euler numbers; §24.2(ii)
\mathop{E^{{(\ell)}}_{{n}}\/}\nolimits
generalized Euler numbers; §24.16(i)
E(\alpha)=\mathop{E\/}\nolimits\!\left(k\right)
notation used by Abramowitz and Stegun (1964, Chapter 17); §19.1
(with \mathop{E\/}\nolimits\!\left(k\right): Legendre’s complete elliptic integral of the second kind)
\mathop{E\/}\nolimits\!\left(k\right)
Legendre’s complete elliptic integral of the second kind; (19.2.8)
\mathop{\eta\/}\nolimits\!\left(\tau\right)
Dedekind’s eta function (or Dedekind modular function); (23.15.9)
\mathop{\eta\/}\nolimits\!\left(\tau\right)
Dedekind’s eta function (or Dedekind modular function); (27.14.12)
E_{s}(\mathbf{z})
elementary symmetric function; (19.19.4)
\mathop{E_{{n}}\/}\nolimits\!\left(x\right)
Euler polynomials; §24.2(ii)
\mathop{E_{1}\/}\nolimits\!\left(z\right)
exponential integral; (6.2.1)
\mathop{E_{{p}}\/}\nolimits\!\left(z\right)
generalized exponential integral; (8.19.1)
\mathop{E_{{a,b}}\/}\nolimits\!\left(z\right)
Mittag-Leffler function; (10.46.3)
\mathop{E_{{q}}\/}\nolimits\!\left(x\right)
q-exponential function; (17.3.2)
\mathop{\mathbf{E}_{{\nu}}\/}\nolimits\!\left(z\right)
Weber function; (11.10.2)
\mathop{e_{{q}}\/}\nolimits\!\left(x\right)
q-exponential function; (17.3.1)
e_{0}(x)=\pi\mathop{\mathrm{Hi}\/}\nolimits\!\left(-x\right)
notation used by Tumarkin (1959); §9.1
(with \mathop{\mathrm{Hi}\/}\nolimits\!\left(z\right): Scorer function (inhomogeneous Airy function))
\tilde{e}_{0}(x)=-\pi\mathop{\mathrm{Gi}\/}\nolimits\!\left(-x\right)
notation used by (Tumarkin, 1959); §9.1
(with \mathop{\mathrm{Gi}\/}\nolimits\!\left(z\right): Scorer function (inhomogeneous Airy function))
\mathop{\widetilde{E}_{{n}}\/}\nolimits\!\left(x\right)
periodic Euler functions; §24.2(iii)
\mathop{{E^{{\prime}}}\/}\nolimits\!\left(k\right)
Legendre’s complementary complete elliptic integral of the second kind; (19.2.9)
\mathop{E^{{(\ell)}}_{{n}}\/}\nolimits\!\left(x\right)
generalized Euler polynomials; §24.16(i)
E(\phi\backslash\alpha)=\mathop{E\/}\nolimits\!\left(\phi,k\right)
notation used by Abramowitz and Stegun (1964, Chapter 17); §19.1
(with \mathop{E\/}\nolimits\!\left(\phi,k\right): Legendre’s incomplete elliptic integral of the second kind)
\mathop{E\/}\nolimits\!\left(\phi,k\right)
Legendre’s incomplete elliptic integral of the second kind; (19.2.5)
{\rm Ec}_{\nu}^{{2m}}(z,k^{2})\propto\mathop{\mathit{Ec}^{{2m}}_{{\nu}}\/}\nolimits\!\left(z,k^{2}\right)
notation used by Ince (1940b); §29.1
(with \mathop{\mathit{Ec}^{{m}}_{{\nu}}\/}\nolimits\!\left(z,k^{2}\right): Lamé function)
{\rm Ec}_{\nu}^{{2m+1}}(z,k^{2})\propto\mathop{\mathit{Es}^{{2m+1}}_{{\nu}}\/}\nolimits\!\left(z,k^{2}\right)
notation used by Ince (1940b); §29.1
(with \mathop{\mathit{Es}^{{m}}_{{\nu}}\/}\nolimits\!\left(z,k^{2}\right): Lamé function)
\mathop{\mathit{Ec}^{{m}}_{{\nu}}\/}\nolimits\!\left(z,k^{2}\right)
Lamé function; §29.3(iv)
\mathop{\mathrm{Ei}\/}\nolimits\!\left(x\right)
exponential integral; §6.2(i)
\mathop{\mathrm{Ein}\/}\nolimits\!\left(z\right)
complementary exponential integral; (6.2.3)
\mathop{\mathrm{el1}\/}\nolimits\!\left(x,k_{c}\right)
Bulirsch’s incomplete elliptic integral of the first kind; (19.2.15)
\mathop{\mathrm{el2}\/}\nolimits\!\left(x,k_{c},a,b\right)
Bulirsch’s incomplete elliptic integral of the second kind; (19.2.12)
\mathop{\mathrm{el3}\/}\nolimits\!\left(x,k_{c},p\right)
Bulirsch’s incomplete elliptic integral of the third kind; (19.2.16)
\mathop{\mathrm{env}\/}\nolimits\mathop{\mathrm{Ai}\/}\nolimits\!\left(x\right)
envelope of Airy function; (2.8.20)
\mathop{\mathrm{env}\/}\nolimits\mathop{\mathrm{Bi}\/}\nolimits\!\left(x\right)
envelope of Airy function; (2.8.20)
\mathop{\mathrm{env}\/}\nolimits\mathop{J_{{\nu}}\/}\nolimits\!\left(x\right)
envelope of Bessel function; (2.8.33)
\mathop{\mathrm{env}\/}\nolimits\mathop{Y_{{\nu}}\/}\nolimits\!\left(x\right)
envelope of Bessel function; (2.8.33)
\mathop{\mathrm{env}\/}\nolimits\mathop{U\/}\nolimits\!\left(-c,x\right)
envelope of parabolic cylinder function; §14.15(v)
\mathop{\mathrm{env}\/}\nolimits\mathop{\overline{U}\/}\nolimits\!\left(-c,x\right)
envelope of parabolic cylinder function; §14.15(v)
\epsilon _{{j,k,\ell}}
Levi-Civita symbol; (1.6.14)
\mathop{\mathcal{E}\/}\nolimits\!\left(x,k\right)
Jacobi’s epsilon function; (22.16.14)
\operatorname{Erf}z=\tfrac{1}{2}\sqrt{\pi}\mathop{\mathrm{erf}\/}\nolimits z
alternative notation for the error function; §7.1
(with \mathop{\mathrm{erf}\/}\nolimits z: error function)
\mathop{\mathrm{erf}\/}\nolimits z
error function; (7.2.1)
\mathop{\mathrm{erfc}\/}\nolimits z
complementary error function; (7.2.2)
\operatorname{Erfi}z=e^{{z^{2}}}\mathop{F\/}\nolimits\!\left(z\right)
alternative notation for Dawson’s integral; §7.1
(with \mathop{F\/}\nolimits\!\left(z\right): Dawson’s integral and e: base of exponential function)
{\rm Es}_{\nu}^{{2m+1}}(z,k^{2})\propto\mathop{\mathit{Ec}^{{2m+1}}_{{\nu}}\/}\nolimits\!\left(z,k^{2}\right)
notation used by Ince (1940b); §29.1
(with \mathop{\mathit{Ec}^{{m}}_{{\nu}}\/}\nolimits\!\left(z,k^{2}\right): Lamé function)
{\rm Es}_{\nu}^{{2m+2}}(z,k^{2})\propto\mathop{\mathit{Es}^{{2m+2}}_{{\nu}}\/}\nolimits\!\left(z,k^{2}\right)
notation used by Ince (1940b); §29.1
(with \mathop{\mathit{Es}^{{m}}_{{\nu}}\/}\nolimits\!\left(z,k^{2}\right): Lamé function)
\mathop{\mathit{Es}^{{m}}_{{\nu}}\/}\nolimits\!\left(z,k^{2}\right)
Lamé function; §29.3(iv)
\mathop{\mathrm{etr}\/}\nolimits\!\left(\mathbf{X}\right)
exponential of trace; §35.1
\mathop{\exp\/}\nolimits z
exponential function; (4.2.19)