8.1 Special Notation8.3 Graphics

§8.2 Definitions and Basic Properties

Contents

§8.2(i) Definitions

The general values of the incomplete gamma functions \mathop{\gamma\/}\nolimits\!\left(a,z\right) and \mathop{\Gamma\/}\nolimits\!\left(a,z\right) are defined by

8.2.1\mathop{\gamma\/}\nolimits\!\left(a,z\right)=\int _{0}^{z}t^{{a-1}}e^{{-t}}dt,\realpart{a}>0,
8.2.2\mathop{\Gamma\/}\nolimits\!\left(a,z\right)=\int _{z}^{\infty}t^{{a-1}}e^{{-t}}dt,

without restrictions on the integration paths. However, when the integration paths do not cross the negative real axis, and in the case of (8.2.2) exclude the origin, \mathop{\gamma\/}\nolimits\!\left(a,z\right) and \mathop{\Gamma\/}\nolimits\!\left(a,z\right) take their principal values; compare §4.2(i). Except where indicated otherwise in the DLMF these principal values are assumed. For example,

8.2.3\mathop{\gamma\/}\nolimits\!\left(a,z\right)+\mathop{\Gamma\/}\nolimits\!\left(a,z\right)=\mathop{\Gamma\/}\nolimits\!\left(a\right),a\neq 0,-1,-2,\dots.

Normalized functions are:

8.2.4
\mathop{P\/}\nolimits\!\left(a,z\right)=\frac{\mathop{\gamma\/}\nolimits\!\left(a,z\right)}{\mathop{\Gamma\/}\nolimits\!\left(a\right)},
\mathop{Q\/}\nolimits\!\left(a,z\right)=\frac{\mathop{\Gamma\/}\nolimits\!\left(a,z\right)}{\mathop{\Gamma\/}\nolimits\!\left(a\right)},
8.2.5\mathop{P\/}\nolimits\!\left(a,z\right)+\mathop{Q\/}\nolimits\!\left(a,z\right)=1.

In addition,

8.2.6\mathop{\gamma^{{*}}\/}\nolimits\!\left(a,z\right)=z^{{-a}}\mathop{P\/}\nolimits\!\left(a,z\right)=\frac{z^{{-a}}}{\mathop{\Gamma\/}\nolimits\!\left(a\right)}\mathop{\gamma\/}\nolimits\!\left(a,z\right).
8.2.7\mathop{\gamma^{{*}}\/}\nolimits\!\left(a,z\right)=\frac{1}{\mathop{\Gamma\/}\nolimits\!\left(a\right)}\int _{0}^{1}t^{{a-1}}e^{{-zt}}dt,\realpart{a}>0.

§8.2(ii) Analytic Continuation

In this subsection the functions \mathop{\gamma\/}\nolimits and \mathop{\Gamma\/}\nolimits have their general values.

The function \mathop{\gamma^{{*}}\/}\nolimits\!\left(a,z\right) is entire in z and a. When z\neq 0, \mathop{\Gamma\/}\nolimits\!\left(a,z\right) is an entire function of a, and \mathop{\gamma\/}\nolimits\!\left(a,z\right) is meromorphic with simple poles at a=-n, n=0,1,2,\dots, with residue (-1)^{n}/n!.

For m\in\Integer,

(8.2.9) also holds when a is zero or a negative integer, provided that the right-hand side is replaced by its limiting value. For example, in the case m=-1 we have

8.2.10e^{{-\pi ia}}\mathop{\Gamma\/}\nolimits\!\left(a,ze^{{\pi i}}\right)-e^{{\pi ia}}\mathop{\Gamma\/}\nolimits\!\left(a,ze^{{-\pi i}}\right)=-\frac{2\pi i}{\mathop{\Gamma\/}\nolimits\!\left(1-a\right)},

without restriction on a.

§8.2(iii) Differential Equations