5.1 Special Notation5.3 Graphics

§5.2 Definitions

Contents

§5.2(i) Gamma and Psi Functions

Euler’s Integral

5.2.1\mathop{\Gamma\/}\nolimits\!\left(z\right)=\int _{0}^{\infty}e^{{-t}}t^{{z-1}}dt,\realpart{z}>0.

When \realpart{z}\leq 0, \mathop{\Gamma\/}\nolimits\!\left(z\right) is defined by analytic continuation. It is a meromorphic function with no zeros, and with simple poles of residue (-1)^{n}/n! at z=-n. 1/\mathop{\Gamma\/}\nolimits\!\left(z\right) is entire, with simple zeros at z=-n.

5.2.2\mathop{\psi\/}\nolimits\!\left(z\right)={\mathop{\Gamma\/}\nolimits^{{\prime}}}\!\left(z\right)/\mathop{\Gamma\/}\nolimits\!\left(z\right),z\neq 0,-1,-2,\dots.

\mathop{\psi\/}\nolimits\!\left(z\right) is meromorphic with simple poles of residue −1 at z=-n.

§5.2(ii) Euler’s Constant

5.2.3\EulerConstant=\lim _{{n\to\infty}}\left(1+\frac{1}{2}+\frac{1}{3}+\dots+\frac{1}{n}-\mathop{\ln\/}\nolimits n\right)=0.57721\; 56649\; 0 1532\; 86060\;\dots.

§5.2(iii) Pochhammer’s Symbol