13.1 Special Notation13.3 Recurrence Relations and Derivatives

§13.2 Definitions and Basic Properties

Contents

§13.2(i) Differential Equation

Kummer’s Equation

13.2.1z\frac{{d}^{2}w}{{dz}^{2}}+(b-z)\frac{dw}{dz}-aw=0.

This equation has a regular singularity at the origin with indices 0 and 1-b, and an irregular singularity at infinity of rank one. It can be regarded as the limiting form of the hypergeometric differential equation (§15.10(i)) that is obtained on replacing z by \ifrac{z}{b}, letting b\to\infty, and subsequently replacing the symbol c by b. In effect, the regular singularities of the hypergeometric differential equation at b and \infty coalesce into an irregular singularity at \infty.

Standard Solutions

The first two standard solutions are:

13.2.2\mathop{M\/}\nolimits\!\left(a,b,z\right)=\sum _{{s=0}}^{{\infty}}\frac{\left(a\right)_{{s}}}{\left(b\right)_{{s}}s!}z^{{s}}=1+\frac{a}{b}z+\frac{a(a+1)}{b(b+1)2!}z^{{2}}+\cdots,

and

13.2.3\mathop{{\mathbf{M}}\/}\nolimits\!\left(a,b,z\right)=\sum _{{s=0}}^{{\infty}}\frac{\left(a\right)_{{s}}}{\mathop{\Gamma\/}\nolimits\!\left(b+s\right)s!}z^{{s}},

except that \mathop{M\/}\nolimits\!\left(a,b,z\right) does not exist when b is a nonpositive integer. In other cases

13.2.4\mathop{M\/}\nolimits\!\left(a,b,z\right)=\mathop{\Gamma\/}\nolimits\!\left(b\right)\mathop{{\mathbf{M}}\/}\nolimits\!\left(a,b,z\right).

The series (13.2.2) and (13.2.3) converge for all z\in\Complex. \mathop{M\/}\nolimits\!\left(a,b,z\right) is entire in z and a, and is a meromorphic function of b. \mathop{{\mathbf{M}}\/}\nolimits\!\left(a,b,z\right) is entire in z, a, and b.

Although \mathop{M\/}\nolimits\!\left(a,b,z\right) does not exist when b=-n, n=0,1,2,\dots, many formulas containing \mathop{M\/}\nolimits\!\left(a,b,z\right) continue to apply in their limiting form. In particular,

13.2.5\lim _{{b\to-n}}\frac{\mathop{M\/}\nolimits\!\left(a,b,z\right)}{\mathop{\Gamma\/}\nolimits\!\left(b\right)}=\mathop{{\mathbf{M}}\/}\nolimits\!\left(a,-n,z\right)=\frac{\left(a\right)_{{n+1}}}{(n+1)!}z^{{n+1}}\mathop{M\/}\nolimits\!\left(a+n+1,n+2,z\right).

When a=-n, n=0,1,2,\dots, \mathop{{\mathbf{M}}\/}\nolimits\!\left(a,b,z\right) is a polynomial in z of degree not exceeding n; this is also true of \mathop{M\/}\nolimits\!\left(a,b,z\right) provided that b is not a nonpositive integer.

Another standard solution of (13.2.1) is \mathop{U\/}\nolimits\!\left(a,b,z\right), which is determined uniquely by the property

13.2.6\mathop{U\/}\nolimits\!\left(a,b,z\right)\sim z^{{-a}},z\to\infty, |\mathop{\mathrm{ph}\/}\nolimits z|\leq\frac{3}{2}\pi-\delta,

where \delta is an arbitrary small positive constant. In general, \mathop{U\/}\nolimits\!\left(a,b,z\right) has a branch point at z=0. The principal branch corresponds to the principal value of z^{{-a}} in (13.2.6), and has a cut in the z-plane along the interval (-\infty,0]; compare §4.2(i).

When b=-n, n=0,1,2,\dots, the following equation can be combined with (13.2.9) and (13.2.10):

13.2.11\mathop{U\/}\nolimits\!\left(a,-n,z\right)=z^{{n+1}}\mathop{U\/}\nolimits\!\left(a+n+1,n+2,z\right).

§13.2(ii) Analytic Continuation

Except when z=0 each branch of \mathop{U\/}\nolimits\!\left(a,b,z\right) is entire in a and b. Unless specified otherwise, however, \mathop{U\/}\nolimits\!\left(a,b,z\right) is assumed to have its principal value.

§13.2(iii) Limiting Forms as z\to 0

Next, in cases when a=-n or -n+b-1, where n is a nonnegative integer,

13.2.14\mathop{U\/}\nolimits\!\left(-n,b,z\right)=(-1)^{n}\left(b\right)_{{n}}+\mathop{O\/}\nolimits\!\left(z\right),
13.2.15\mathop{U\/}\nolimits\!\left(-n+b-1,b,z\right)=(-1)^{n}\left(2-b\right)_{{n}}z^{{1-b}}+\mathop{O\/}\nolimits\!\left(z^{{2-b}}\right).

In all other cases

13.2.16\mathop{U\/}\nolimits\!\left(a,b,z\right)=\frac{\mathop{\Gamma\/}\nolimits\!\left(b-1\right)}{\mathop{\Gamma\/}\nolimits\!\left(a\right)}z^{{1-b}}+\mathop{O\/}\nolimits\!\left(z^{{2-\realpart{b}}}\right),\realpart{b}\geq 2, b\not=2,
13.2.17\mathop{U\/}\nolimits\!\left(a,2,z\right)=\frac{1}{\mathop{\Gamma\/}\nolimits\!\left(a\right)}z^{{-1}}+\mathop{O\/}\nolimits\!\left(\mathop{\ln\/}\nolimits z\right),
13.2.18\mathop{U\/}\nolimits\!\left(a,b,z\right)=\frac{\mathop{\Gamma\/}\nolimits\!\left(b-1\right)}{\mathop{\Gamma\/}\nolimits\!\left(a\right)}z^{{1-b}}+\frac{\mathop{\Gamma\/}\nolimits\!\left(1-b\right)}{\mathop{\Gamma\/}\nolimits\!\left(a-b+1\right)}+\mathop{O\/}\nolimits\!\left(z^{{2-\realpart{b}}}\right),1\leq\realpart{b}<2, b\not=1,
13.2.19\mathop{U\/}\nolimits\!\left(a,1,z\right)=-\frac{1}{\mathop{\Gamma\/}\nolimits\!\left(a\right)}\left(\mathop{\ln\/}\nolimits z+\mathop{\psi\/}\nolimits\!\left(a\right)+2\gamma\right)+\mathop{O\/}\nolimits\!\left(z\mathop{\ln\/}\nolimits z\right),
13.2.20\mathop{U\/}\nolimits\!\left(a,b,z\right)=\frac{\mathop{\Gamma\/}\nolimits\!\left(1-b\right)}{\mathop{\Gamma\/}\nolimits\!\left(a-b+1\right)}+\mathop{O\/}\nolimits\!\left(z^{{1-\realpart{b}}}\right),0<\realpart{b}<1,
13.2.21\mathop{U\/}\nolimits\!\left(a,0,z\right)=\frac{1}{\mathop{\Gamma\/}\nolimits\!\left(a+1\right)}+\mathop{O\/}\nolimits\!\left(z\mathop{\ln\/}\nolimits z\right),
13.2.22\mathop{U\/}\nolimits\!\left(a,b,z\right)=\frac{\mathop{\Gamma\/}\nolimits\!\left(1-b\right)}{\mathop{\Gamma\/}\nolimits\!\left(a-b+1\right)}+\mathop{O\/}\nolimits\!\left(z\right),\realpart{b}\leq 0, b\not=0.

§13.2(iv) Limiting Forms as z\to\infty

Except when a=0,-1,\dots (polynomial cases),

13.2.23\mathop{{\mathbf{M}}\/}\nolimits\!\left(a,b,z\right)\sim\ifrac{e^{z}z^{{a-b}}}{\mathop{\Gamma\/}\nolimits\!\left(a\right)},\left|\mathop{\mathrm{ph}\/}\nolimits z\right|\leq\frac{1}{2}\pi-\delta,

where \delta is an arbitrary small positive constant.

For \mathop{U\/}\nolimits\!\left(a,b,z\right) see (13.2.6).

§13.2(v) Numerically Satisfactory Solutions

Fundamental pairs of solutions of (13.2.1) that are numerically satisfactory (§2.7(iv)) in the neighborhood of infinity are

A fundamental pair of solutions that is numerically satisfactory near the origin is

13.2.26\mathop{M\/}\nolimits\!\left(a,b,z\right),\quad z^{{1-b}}\mathop{M\/}\nolimits\!\left(a-b+1,2-b,z\right),b\not\in\Integer.

§13.2(vi) Wronskians

13.2.33\mathop{\mathscr{W}\/}\nolimits\left\{\mathop{{\mathbf{M}}\/}\nolimits\!\left(a,b,z\right),z^{{1-b}}\mathop{{\mathbf{M}}\/}\nolimits\!\left(a-b+1,2-b,z\right)\right\}=\mathop{\sin\/}\nolimits\!\left(\pi b\right)z^{{-b}}e^{z}/\pi,
13.2.34\mathop{\mathscr{W}\/}\nolimits\left\{\mathop{{\mathbf{M}}\/}\nolimits\!\left(a,b,z\right),\mathop{U\/}\nolimits\!\left(a,b,z\right)\right\}=-\ifrac{z^{{-b}}e^{z}}{\mathop{\Gamma\/}\nolimits\!\left(a\right)},
13.2.35\mathop{\mathscr{W}\/}\nolimits\left\{\mathop{{\mathbf{M}}\/}\nolimits\!\left(a,b,z\right),e^{z}\mathop{U\/}\nolimits\!\left(b-a,b,e^{{\pm\pi i}}z\right)\right\}=\ifrac{e^{{\mp b\pi i}}z^{{-b}}e^{z}}{\mathop{\Gamma\/}\nolimits\!\left(b-a\right)},
13.2.36\mathop{\mathscr{W}\/}\nolimits\left\{ z^{{1-b}}\mathop{{\mathbf{M}}\/}\nolimits\!\left(a-b+1,2-b,z\right),\mathop{U\/}\nolimits\!\left(a,b,z\right)\right\}=-\ifrac{z^{{-b}}e^{z}}{\mathop{\Gamma\/}\nolimits\!\left(a-b+1\right)},
13.2.37\mathop{\mathscr{W}\/}\nolimits\left\{ z^{{1-b}}\mathop{{\mathbf{M}}\/}\nolimits\!\left(a-b+1,2-b,z\right),e^{z}\mathop{U\/}\nolimits\!\left(b-a,b,e^{{\pm\pi i}}z\right)\right\}=-\ifrac{z^{{-b}}e^{z}}{\mathop{\Gamma\/}\nolimits\!\left(1-a\right)},
13.2.38\mathop{\mathscr{W}\/}\nolimits\left\{\mathop{U\/}\nolimits\!\left(a,b,z\right),e^{z}\mathop{U\/}\nolimits\!\left(b-a,b,e^{{\pm\pi i}}z\right)\right\}=e^{{\pm(a-b)\pi i}}z^{{-b}}e^{z}.