30.3 Eigenvalues30.5 Functions of the Second Kind

§30.4 Functions of the First Kind

Contents

§30.4(i) Definitions

The eigenfunctions of (30.2.1) that correspond to the eigenvalues \mathop{\lambda^{{m}}_{{n}}\/}\nolimits\!\left(\gamma^{2}\right) are denoted by \mathop{\mathsf{Ps}^{{m}}_{{n}}\/}\nolimits\!\left(x,\gamma^{2}\right), n=m,m+1,m+2,\dots. They are normalized by the condition

30.4.1\int _{{-1}}^{1}\left(\mathop{\mathsf{Ps}^{{m}}_{{n}}\/}\nolimits\!\left(x,\gamma^{2}\right)\right)^{2}dx=\frac{2}{2n+1}\frac{(n+m)!}{(n-m)!},

the sign of \mathop{\mathsf{Ps}^{{m}}_{{n}}\/}\nolimits\!\left(0,\gamma^{2}\right) being (-1)^{{(n+m)/2}} when n-m is even, and the sign of \ifrac{d\mathop{\mathsf{Ps}^{{m}}_{{n}}\/}\nolimits\!\left(x,\gamma^{2}\right)}{dx}|_{{x=0}} being (-1)^{{(n+m-1)/2}} when n-m is odd.

When \gamma^{2}>0 \mathop{\mathsf{Ps}^{{m}}_{{n}}\/}\nolimits\!\left(x,\gamma^{2}\right) is the prolate angular spheroidal wave function, and when \gamma^{2}<0 \mathop{\mathsf{Ps}^{{m}}_{{n}}\/}\nolimits\!\left(x,\gamma^{2}\right) is the oblate angular spheroidal wave function. If \gamma=0, \mathop{\mathsf{Ps}^{{m}}_{{n}}\/}\nolimits\!\left(x,0\right) reduces to the Ferrers function \mathop{\mathsf{P}^{{m}}_{{n}}\/}\nolimits\!\left(x\right):

30.4.2\mathop{\mathsf{Ps}^{{m}}_{{n}}\/}\nolimits\!\left(x,0\right)=\mathop{\mathsf{P}^{{m}}_{{n}}\/}\nolimits\!\left(x\right);

compare §14.3(i).

§30.4(ii) Elementary Properties

§30.4(iii) Power-Series Expansion

30.4.4\mathop{\mathsf{Ps}^{{m}}_{{n}}\/}\nolimits\!\left(x,\gamma^{2}\right)=(1-x^{2})^{{\frac{1}{2}m}}\sum _{{k=0}}^{{\infty}}g_{k}x^{k},-1\leq x\leq 1,

where

30.4.5\alpha _{k}g_{{k+2}}+(\beta _{k}-\mathop{\lambda^{{m}}_{{n}}\/}\nolimits\!\left(\gamma^{2}\right))g_{k}+\gamma _{k}g_{{k-2}}=0

with \alpha _{k}, \beta _{k}, \gamma _{k} from (30.3.6), and g_{{-1}}=g_{{-2}}=0, g_{k}=0 for even k if n-m is odd and g_{k}=0 for odd k if n-m is even. Normalization of the coefficients g_{k} is effected by application of (30.4.1).

§30.4(iv) Orthogonality

The expansion (30.4.7) converges in the norm of L^{2}(-1,1), that is,

30.4.9\lim _{{N\to\infty}}\int _{{-1}}^{1}\left|f(x)-\sum _{{n=m}}^{N}c_{n}\mathop{\mathsf{Ps}^{{m}}_{{n}}\/}\nolimits\!\left(x,\gamma^{2}\right)\right|^{2}dx=0.

It is also equiconvergent with its expansion in Ferrers functions (as in (30.4.2)), that is, the difference of corresponding partial sums converges to 0 uniformly for -1\leq x\leq 1.