18 Orthogonal Polynomials18.2 General Orthogonal Polynomials

§18.1 Notation

Contents

§18.1(i) Special Notation

(For other notation see Notation for the Special Functions.)

x,y real variables.
z(=x+iy) complex variable.
q real variable such that 0<q<1, unless stated otherwise.
\ell,m nonnegative integers.
n nonnegative integer, except in §18.30.
N positive integer.
\mathop{\delta\/}\nolimits\!\left(x-a\right) Dirac delta (§1.17).
\delta arbitrary small positive constant.
p_{n}(x) polynomial in x of degree n.
p_{{-1}}(x) 0.
w(x) weight function (\geq 0) on an open interval (a,b).
w_{x} weights (>0) at points x\in X of a finite or countably infinite subset of \Real.
OP’s orthogonal polynomials.

x-Differences

Forward differences:

\Delta _{{x}}\left(f(x)\right)=f(x+1)-f(x),
\Delta _{{x}}^{{n+1}}\left(f(x)\right)=\Delta _{{x}}\left(\Delta _{{x}}^{n}(f(x))\right).

Backward differences:

\nabla _{{x}}\left(f(x)\right)=f(x)-f(x-1),
\nabla _{{x}}^{{n+1}}\left(f(x)\right)=\nabla _{{x}}\left(\nabla _{{x}}^{n}(f(x))\right).

Central differences in imaginary direction:

\delta _{{x}}\left(f(x)\right)=\left(f(x+\tfrac{1}{2}i)-f(x-\tfrac{1}{2}i)\right)/i,
\delta _{{x}}^{{n+1}}\left(f(x)\right)=\delta _{{x}}\left(\delta _{{x}}^{n}(f(x))\right).

q-Pochhammer Symbol

\left(z;q\right)_{{0}}=1,
\left(z;q\right)_{{n}}=(1-z)(1-zq)\cdots(1-zq^{{n-1}}),
\left(z_{1},\dots,z_{k};q\right)_{{n}}=\left(z_{1};q\right)_{{n}}\cdots\left(z_{k};q\right)_{{n}}.

§18.1(ii) Main Functions

The main functions treated in this chapter are:

Classical OP’s

  • Jacobi: \mathop{P^{{(\alpha,\beta)}}_{{n}}\/}\nolimits\!\left(x\right).

  • Ultraspherical (or Gegenbauer): \mathop{C^{{(\lambda)}}_{{n}}\/}\nolimits\!\left(x\right).

  • Chebyshev of first, second, third, and fourth kinds: \mathop{T_{{n}}\/}\nolimits\!\left(x\right), \mathop{U_{{n}}\/}\nolimits\!\left(x\right), \mathop{V_{{n}}\/}\nolimits\!\left(x\right), \mathop{W_{{n}}\/}\nolimits\!\left(x\right).

  • Shifted Chebyshev of first and second kinds: \mathop{T^{{*}}_{{n}}\/}\nolimits\!\left(x\right), \mathop{U^{{*}}_{{n}}\/}\nolimits\!\left(x\right).

  • Legendre: \mathop{P_{{n}}\/}\nolimits\!\left(x\right).

  • Shifted Legendre: \mathop{P^{{*}}_{{n}}\/}\nolimits\!\left(x\right).

  • Laguerre: \mathop{L^{{(\alpha)}}_{{n}}\/}\nolimits\!\left(x\right) and \mathop{L_{{n}}\/}\nolimits\!\left(x\right)=\mathop{L^{{(0)}}_{{n}}\/}\nolimits\!\left(x\right). (\mathop{L^{{(\alpha)}}_{{n}}\/}\nolimits\!\left(x\right) with \alpha\neq 0 is also called Generalized Laguerre.)

  • Hermite: \mathop{H_{{n}}\/}\nolimits\!\left(x\right), \mathop{\mathit{He}_{{n}}\/}\nolimits\!\left(x\right).

Hahn Class OP’s

  • Hahn: \mathop{Q_{{n}}\/}\nolimits\!\left(x;\alpha,\beta,N\right).

  • Krawtchouk: \mathop{K_{{n}}\/}\nolimits\!\left(x;p,N\right).

  • Meixner: \mathop{M_{{n}}\/}\nolimits\!\left(x;\beta,c\right).

  • Charlier: \mathop{C_{{n}}\/}\nolimits\!\left(x,a\right).

  • Continuous Hahn: \mathop{p_{{n}}\/}\nolimits\!\left(x;a,b,\conj{a},\conj{b}\right).

  • Meixner–Pollaczek: \mathop{P^{{(\lambda)}}_{{n}}\/}\nolimits\!\left(x;\phi\right).

Wilson Class OP’s

  • Wilson: \mathop{W_{{n}}\/}\nolimits\!\left(x;a,b,c,d\right).

  • Racah: \mathop{R_{{n}}\/}\nolimits\!\left(x;\alpha,\beta,\gamma,\delta\right).

  • Continuous Dual Hahn: \mathop{S_{{n}}\/}\nolimits\!\left(x;a,b,c\right).

  • Dual Hahn: \mathop{R_{{n}}\/}\nolimits\!\left(x;\gamma,\delta,N\right).

q-Hahn Class OP’s

  • q-Hahn: \mathop{Q_{{n}}\/}\nolimits\!\left(x;\alpha,\beta,N;q\right).

  • Big q-Jacobi: \mathop{P_{{n}}\/}\nolimits\!\left(x;a,b,c;q\right).

  • Little q-Jacobi: \mathop{p_{{n}}\/}\nolimits\!\left(x;a,b;q\right).

  • q-Laguerre: \mathop{L^{{(\alpha)}}_{{n}}\/}\nolimits\!\left(x;q\right).

  • Stieltjes–Wigert: \mathop{S_{{n}}\/}\nolimits\!\left(x;q\right).

  • Discrete q-Hermite I: \mathop{h_{{n}}\/}\nolimits\!\left(x;q\right).

  • Discrete q-Hermite II: \mathop{\tilde{h}_{{n}}\/}\nolimits\!\left(x;q\right).

Askey–Wilson Class OP’s

  • Askey–Wilson: \mathop{p_{{n}}\/}\nolimits\!\left(x;a,b,c,d\,|\, q\right).

  • Al-Salam–Chihara: \mathop{Q_{{n}}\/}\nolimits\!\left(x;a,b\,|\, q\right).

  • Continuous q-Ultraspherical: \mathop{C_{{n}}\/}\nolimits\!\left(x;\beta\,|\, q\right).

  • Continuous q-Hermite: \mathop{H_{{n}}\/}\nolimits\!\left(x\,|\, q\right).

  • Continuous q^{{-1}}-Hermite: \mathop{h_{{n}}\/}\nolimits\!\left(x\,|\, q\right)

  • q-Racah: \mathop{R_{{n}}\/}\nolimits\!\left(x;\alpha,\beta,\gamma,\delta\,|\, q\right).

Other OP’s

  • Bessel: \mathop{y_{{n}}\/}\nolimits\!\left(x;a\right).

  • Pollaczek: \mathop{P^{{(\lambda)}}_{{n}}\/}\nolimits\!\left(x;a,b\right).

Classical OP’s in Two Variables

  • Disk: \mathop{R^{{(\alpha)}}_{{m,n}}\/}\nolimits\!\left(z\right).

  • Triangle: \mathop{P^{{\alpha,\beta,\gamma}}_{{m,n}}\/}\nolimits\!\left(x,y\right).

§18.1(iii) Other Notations

In Szegö (1975, §4.7) the ultraspherical polynomials \mathop{C^{{(\lambda)}}_{{n}}\/}\nolimits\!\left(x\right) are denoted by P_{n}^{{(\lambda)}}(x). The ultraspherical polynomials will not be considered for \lambda=0. They are defined in the literature by \mathop{C^{{(0)}}_{{0}}\/}\nolimits\!\left(x\right)=1 and

18.1.1\mathop{C^{{(0)}}_{{n}}\/}\nolimits\!\left(x\right)=\frac{2}{n}\mathop{T_{{n}}\/}\nolimits\!\left(x\right)=\frac{2(n-1)!}{\left(\tfrac{1}{2}\right)_{{n}}}\mathop{P^{{(-\frac{1}{2},-\frac{1}{2})}}_{{n}}\/}\nolimits\!\left(x\right),n=1,2,3,\dots.

Nor do we consider the shifted Jacobi polynomials:

18.1.2\mathop{G_{{n}}\/}\nolimits\!\left(p,q,x\right)=\frac{n!}{\left(n+p\right)_{{n}}}\mathop{P^{{(p-q,q-1)}}_{{n}}\/}\nolimits\!\left(2x-1\right),

or the dilated Chebyshev polynomials of the first and second kinds:

18.1.3
\mathop{C_{{n}}\/}\nolimits\!\left(x\right)=2\mathop{T_{{n}}\/}\nolimits\!\left(\tfrac{1}{2}x\right),
\mathop{S_{{n}}\/}\nolimits\!\left(x\right)=\mathop{U_{{n}}\/}\nolimits\!\left(\tfrac{1}{2}x\right).

In Koekoek et al. (2010) \delta _{{x}} denotes the operator i\!\delta _{{x}}.