Notations JNotations L
Notations K
*ABCDEFGHIJ♦K♦LMNOPQRSTUVWXYZ
K(\alpha)=\mathop{K\/}\nolimits\!\left(k\right)
notation used by Abramowitz and Stegun (1964, Chapter 17); §19.1
(with \mathop{K\/}\nolimits\!\left(k\right): Legendre’s complete elliptic integral of the first kind)
\mathop{K\/}\nolimits\!\left(k\right)
Legendre’s complete elliptic integral of the first kind; (19.2.8)
\kappa(\lambda)
condition number; §3.2(v)
\mathop{K_{{\nu}}\/}\nolimits\!\left(z\right)
modified Bessel function; (10.25.3)
\mathop{\widetilde{K}_{{\nu}}\/}\nolimits\!\left(x\right)
modified Bessel function of imaginary order; (10.45.2)
\mathcal{K}_{\nu}(\mathbf{T})=|\mathbf{T}|^{\nu}\mathop{B_{{\nu}}\/}\nolimits\!\left(\mathbf{S}\mathbf{T}\right)
notation used by Faraut and Korányi (1994, pp. 357–358); §35.1
(with \mathop{B_{{\nu}}\/}\nolimits\!\left(\mathbf{T}\right): Bessel function of matrix argument (second kind))
\mathop{\mathbf{K}_{{\nu}}\/}\nolimits\!\left(z\right)
Struve function; (11.2.5)
K_{\nu}(z)=\mathop{\cos\/}\nolimits(\nu\pi)\mathop{K_{{\nu}}\/}\nolimits\!\left(z\right)
notation used by Whittaker and Watson (1927); §10.1
(with \mathop{\cos\/}\nolimits z: cosine function and \mathop{K_{{\nu}}\/}\nolimits\!\left(z\right): modified Bessel function)
\mathop{\mathsf{k}_{{n}}\/}\nolimits\!\left(z\right)
modified spherical Bessel function; (10.47.9)
\mathop{{K^{{\prime}}}\/}\nolimits\!\left(k\right)
Legendre’s complementary complete elliptic integral of the first kind; (19.2.9)
\mathfrak{K}(a,x,s)=\mathop{\Phi\/}\nolimits\!\left(e^{{2\pi ix}},s,a\right)
notation used by (Lerch, 1887); §25.14(i)
(with \mathop{\Phi\/}\nolimits\!\left(z,s,a\right): Lerch’s transcendent and e: base of exponential function)
\mathop{K_{{n}}\/}\nolimits\!\left(x;p,N\right)
Krawtchouk polynomial; Table 18.19.1
K_{m}(0,\dots,0,\nu\mathpunct{|}\mathbf{S},\mathbf{T})=|\mathbf{T}|^{\nu}\mathop{B_{{\nu}}\/}\nolimits\!\left(\mathbf{S}\mathbf{T}\right)
notation used by Terras (1988, pp. 49–64); §35.1
(with \mathop{B_{{\nu}}\/}\nolimits\!\left(\mathbf{T}\right): Bessel function of matrix argument (second kind))
\mathop{\mathrm{Ke}_{{n}}\/}\nolimits\!\left(z,h\right)
modified Mathieu function; (28.20.19)
\mathop{\mathrm{kei}_{{\nu}}\/}\nolimits\!\left(x\right)
Kelvin function; (10.61.2)
\mathop{\mathrm{ker}_{{\nu}}\/}\nolimits\!\left(x\right)
Kelvin function; (10.61.2)
\mathrm{Kh}_{\nu}(z)=(2/\pi)\mathop{K_{{\nu}}\/}\nolimits\!\left(z\right)
notation used by Jeffreys and Jeffreys (1956); §10.1
(with \mathop{K_{{\nu}}\/}\nolimits\!\left(z\right): modified Bessel function)
\mathop{\mathrm{Ki}_{{\alpha}}\/}\nolimits\!\left(x\right)
Bickley function; (10.43.11)
\mathop{\mathrm{Ko}_{{n}}\/}\nolimits\!\left(z,h\right)
modified Mathieu function; (28.20.20)