23.2 Definitions and Periodic Properties23.4 Graphics

§23.3 Differential Equations

Contents

§23.3(i) Invariants, Roots, and Discriminant

The lattice roots satisfy the cubic equation

23.3.34z^{3}-g_{2}z-g_{3}=0,

and are denoted by e_{1},e_{2},e_{3}. The discriminant1.11(ii)) is given by

23.3.4\Delta=g_{2}^{3}-27g_{3}^{2}=16(e_{2}-e_{3})^{2}(e_{3}-e_{1})^{2}(e_{1}-e_{2})^{2}.

In consequence,

23.3.5e_{1}+e_{2}+e_{3}=0,
23.3.6g_{2}=2(e_{1}^{2}+e_{2}^{2}+e_{3}^{2})=-4(e_{2}e_{3}+e_{3}e_{1}+e_{1}e_{2}),
23.3.7g_{3}=4e_{1}e_{2}e_{3}=\tfrac{4}{3}(e_{1}^{3}+e_{2}^{3}+e_{3}^{3}).

Let g_{2}^{3}\neq 27g_{3}^{2}, or equivalently \Delta be nonzero, or e_{1},e_{2},e_{3} be distinct. Given g_{2} and g_{3} there is a unique lattice \mathbb{L} such that (23.3.1) and (23.3.2) are satisfied. We may therefore define

23.3.8\mathop{\wp\/}\nolimits\!\left(z;g_{2},g_{3}\right)=\mathop{\wp\/}\nolimits\!\left(z|\mathbb{L}\right).

Similarly for \mathop{\zeta\/}\nolimits\!\left(z;g_{2},g_{3}\right) and \mathop{\sigma\/}\nolimits\!\left(z;g_{2},g_{3}\right). As functions of g_{2} and g_{3}, \mathop{\wp\/}\nolimits\!\left(z;g_{2},g_{3}\right) and \mathop{\zeta\/}\nolimits\!\left(z;g_{2},g_{3}\right) are meromorphic and \mathop{\sigma\/}\nolimits\!\left(z;g_{2},g_{3}\right) is entire.

Conversely, g_{2}, g_{3}, and the set \{ e_{1},e_{2},e_{3}\} are determined uniquely by the lattice \mathbb{L} independently of the choice of generators. However, given any pair of generators 2\omega _{1}, 2\omega _{3} of \mathbb{L}, and with \omega _{2} defined by (23.2.1), we can identify the e_{j} individually, via

23.3.9e_{j}=\mathop{\wp\/}\nolimits\!\left(\omega _{j}|\mathbb{L}\right),j=1,2,3.

In what follows, it will be assumed that (23.3.9) always applies.

§23.3(ii) Differential Equations and Derivatives

23.3.10{{\mathop{\wp\/}\nolimits^{{\prime}}}}^{2}(z)=4\!{\mathop{\wp\/}\nolimits^{{3}}}\!\left(z\right)-g_{2}\mathop{\wp\/}\nolimits\!\left(z\right)-g_{3},
23.3.11{{\mathop{\wp\/}\nolimits^{{\prime}}}}^{2}(z)=4(\mathop{\wp\/}\nolimits\!\left(z\right)-e_{1})(\mathop{\wp\/}\nolimits\!\left(z\right)-e_{2})(\mathop{\wp\/}\nolimits\!\left(z\right)-e_{3}),
23.3.12{\mathop{\wp\/}\nolimits^{{\prime\prime}}}\!\left(z\right)=6\!{\mathop{\wp\/}\nolimits^{{2}}}\!\left(z\right)-\tfrac{1}{2}g_{2},
23.3.13{\mathop{\wp\/}\nolimits^{{\prime\prime\prime}}}\!\left(z\right)=12\mathop{\wp\/}\nolimits\!\left(z\right){\mathop{\wp\/}\nolimits^{{\prime}}}\!\left(z\right).

See also (23.2.7) and (23.2.8).